
i

London School of Economics and Political Science

Department of Management

Rewriting the Developer: Professional Identity

Reconstruction in the Age of AI Coding Tools.

Dissertation

MG4D7

Wordcount: 8791

Submitted by Candidate 42439

Supervisor: Associate Professor Maha Shaikh

ii

Abstract

As artificial intelligence coding tools proliferate across the profession, a fundamental

question emerges: are developers simply adopting new tools, or is the very nature of

programming being reconstructed? This dissertation investigates how AI coding tools

transform not just developer productivity, but professional practice, identity, and knowledge

production itself.

Through semi-structured interviews with fourteen software professionals across startups,

enterprises, and consultancies, this qualitative study employs a novel dual-lens theoretical

framework combining Actor-Network Theory and Affordance-Actualisation Theory. This

reveals how identical AI coding tools produce different professional transformations based on

how the developers integrate these tools into their roles, and their level of comfortability in

delegating tasks to these tools. Thematic analysis uncovered three distinct transformation

patterns, challenging linear adoption narratives.

Complete Transformers (36%) fundamentally reconstruct their professional identity from

"code writers" to "AI orchestrators," using their own AI coding tools, proprietary

organisational systems that amplify AI capabilities through recursive knowledge

accumulation. Selective Adopters (50%) maintain strategic boundaries between human and

AI work, articulating sophisticated decision frameworks: "it's a tool, not a rule." Conscious

Resisters (14%) actively preserve traditional expertise and reject delegating any roles to AI

coding tools willingly.

Two critical phenomena emerged across the three role transformation types discovered

through the research. First, "vibe coding", where developers iterate conversationally with AI

until solutions "feel right", represents an epistemic shift from deterministic to intuitive

programming practices. Second, all interviewed participants expressed profound concern

about junior developer skill development, as AI automation of entry-level tasks collapses

traditional learning pathways, potentially affecting how the profession reproduce essential

expertise.

The Network-Affordance Integration Model developed through this research explains

differential transformation outcomes, revealing professional practice transformation as

ecosystem diversification rather than convergence. These findings have immediate

implications for organisational strategy, educational design, and individual career planning.

As knowledge professions broadly confront AI integration, understanding software

development's early transformation provides crucial insights for navigating the fundamental

reconstruction of professional work in the AI era.

iii

Table of Contents
Abstract .. ii

List of Abbreviations... iv

List of Figures .. v

List of Tables ... vi

Chapter 1: Introduction .. 1

Chapter 2: Literature Review ... 4

Chapter 3: Methodology .. 10

Chapter 4: Findings .. 15

Chapter 5: Discussion .. 25

Chapter 6: Conclusion.. 32

References .. 36

Appendix .. 40

Appendix A: Participant Consent Form ... 40

Appendix B: Detailed Methodology Documentation .. 41

Appendix C: Thematic Analysis Coding Framework .. 45

Appendix D: Additional Participant Quotes and Details ... 52

Appendix E: Semi-Structured Interview Questions ... 58

Appendix F: AI Acknowledgement ... 59

iv

List of Abbreviations

AAT - Affordance-Actualisation Theory

AI - Artificial Intelligence

ANT - Actor-Network Theory

API - Application Programming Interface

GDPR - General Data Protection Regulation

HIPAA - Health Insurance Portability and Accountability Act

HTML - HyperText Markup Language

ID - Identifier

IDE - Integrated Development Environment

IS - Information Systems

IT - Information Technology

LSE - London School of Economics and Political Science

METR - Model Evaluation and Threat Research

ML - Machine Learning

NBER - National Bureau of Economic Research

OECD - Organisation for Economic Co-operation and Development

PMC - PubMed Central

SEC - Securities and Exchange Commission

TAM - Technology Acceptance Model

UI - User Interface

UTAUT - Unified Theory of Acceptance and Use of Technology

v

List of Figures

Figure 1: Coding Quotes into Themes. .. 13
Figure 2: Thematic Analysis Coding Tree ... 13
Figure 3: Delegation patterns across clusters... 20
Figure 4: Synthesis of these workflow transformations. ... 22
Figure 5: Relationship between network position and affordance perception. 28

vi

List of Tables

Table 1: Participant Demographics Summary. ... 11
Table 2: Research Contributions Summary ... 33

1

Chapter 1: Introduction

Among the software developers interviewed for this study, diverse approaches to AI tool

integration are emerging. With 76% of developers using or planning to use AI coding tools

daily (Stack Overflow, 2024), senior developers are redefining their role from manually

coding towards orchestrating AI driven ecosystems. Already, there have been projections that

there will be a majority shift of "manual coders to orchestrators" by 2030 (Ammar et al.,

2024).

Junior developers using AI coding tools can produce complex code at an unprecedented level

but would struggle to explain how it works or build on it further (Osmani, 2025).

Organisations diverge in their approaches, allowing AI coding tool adoption while other

organisations maintain their traditional development practices (GitHub, 2024; Google Cloud,

2025). This ongoing role transformation demands investigation beyond productivity metrics

to understand how these tools reconstruct this professional practice for software developers.

1.1 The Research Gap

Despite AI coding tools' rapid adoption there is a lack theoretical understanding of its

transformative impact. Current literature has three critical limitations that this research paper

addresses.

Firstly, the field's quantitative bias toward using productivity metrics neglects the changes to

the human technological interaction of this transformation. Traditional IS adoption models for

technology like TAM (Davis, 1989) and UTAUT (Venkatesh et al., 2003) assumes stable

technology boundaries that recede over time as developers reconsider their roles changing

from code writers to AI orchestrators. These critical reviews argue these models have "a

narrow perspective, which focuses only on individual adopters' beliefs, perceptions and usage

intention" failing to capture the fundamental task and responsibility transformations

occurring with AI coding tool implementation (Holden and Karsh, 2019).

The second limitation is that assuming uniform adoption overlooks the different patterns in

how people are using AI tools. Current frameworks struggle to capture the nuanced and

varied strategies developers employ when integrating AI coding tools, and the separation

between AI appropriate and human essential tasks. This selective integration of tools

2

challenges the technological determinism pervading AI discourse, yet empirical investigation

of these boundary-setting practices remains commonly absent from literature.

Industry analyses confirm that entry-level roles face existential challenges, with 77% of

leaders expecting AI to enable junior workers to take on greater responsibilities while

simultaneously reducing hiring needs (Microsoft, 2024). Industry analysis warns that AI

coding assistants may lead to fewer junior developer positions as teams reshape around senior

roles overseeing AI-generated code (Gross, 2025). Yet we lack understanding of the systemic

implications for professional development and skill transfer.

1.2 Research Question and Objectives

Therefore, this dissertation asks: How do AI coding tools transform the professional

practice of software developers?

This question explores not only whether developers adopt AI coding tools, but how these

tools reshape what developers do, how they work, and how they perceive themselves. The

transformation extends beyond productivity to encompass the full spectrum of professional

practice of developers.

This central question is addressed through three integrated objectives:

Objective 1: Examine how AI coding tools change task allocation and workflow patterns in

software development, investigating role redistribution between human and artificial actors.

Objective 2: Identify emerging core competencies and traditional skill transformations as

developers integrate AI coding tools, exploring how different actualisation strategies lead to

new skill portfolios.

Objective 3: Understand how developers reconceptualise their professional identity and

future career trajectories.

1.3 Intended Contributions

This research aims to advance IS theory by synthesising ANT and AAT to explain the

different transformation outcomes in AI coding tool adoption. Through qualitative

investigation of software developers' experiences, this study seeks to:

1. Challenge the linear adoption models by showing multiple transformation pathways

2. Identify organisational strategies that determine AI coding tool effectiveness

3

3. Document user resistance as a legitimate response to address success bias

4. Examine the implications for junior developers’ skill development and future employment.

With this research the dissertation contributes to understanding software development's

transformation as a potential template for other professions experiencing AI integration. The

following chapter examines existing literature across information systems, software

engineering, and organisational research.

4

Chapter 2: Literature Review

The integration of AI coding tools in software development represents a socio-technical

transformation. The academic landscape on this topic is young and remains fragmented and

superficial. This review synthesises literature from information systems, software

engineering, and organisational research to explore how AI tools reconfigure programming

work, professional identity, and organisational capabilities. We exclude purely technical

evaluations of AI performance, ethical debates about AI consciousness, and speculative future

scenarios to maintain focus on empirically grounded professional transformation.

2.1 Traditional Information Systems Perspectives on Analysing Technology Use

Some traditional IS adoption frameworks are not equipped to understand AI coding tools. The

Technology Acceptance Model (Davis, 1989) and its evolution into UTAUT (Venkatesh et al.,

2003) assumes technology like coding tool would have clear boundaries between user and

tool. Recent attempts to extend TAM with AI-specific constructs (Dahri et al., 2024) still

treats AI as an enhanced tool rather than a transformative force that reconstructs the role and

tasks for the user. AI coding supersedes the boundaries set in these papers.

Orlikowski (2007) sociometrical perspective is better suited for this type of analysis. Her

argument that "the social and the material are constitutively entangled in everyday life" (p.

1437) directly applies to developers whose work practices become intertwined with AI

functionality. When looking at GitHub Copilot integration, it transcends tool use, it represents

a change in the entire production process for code. With AI coding tools, this entanglement is

literal: human intention and AI capability merge in the act of producing code. The developer

thinks, AI generates, developer evaluates.

Leonardi (2011) concept of materiality states that technology has features exist across

different use contexts, but how people use it still depends on the context of the user. For AI

coding tools, this means that AI always has the same capabilities such as generating code

from prompts. But what happens depends on the organisation (startup vs. bank), the person's

skills, and the rules they must follow. This explains how the same AI coding tool produces

amazing results for one developer and frustration for another.

2.2 Actor-Network Theory: AI Coding Tools as An Active Participant in Development

Actor-Network Theory (ANT), developed by Bruno Latour, Michel Callon, and John Law in

the 1980s, provides an approach to understanding how socio-technical systems treat human

5

and non-human entities as equally of action within networks. This theory has been further

expanded in Latour (2005), which continues to treat human and non-human actors equally.

 ANT treats non-humans as actors shaping outcomes (Latour, 2005). This matters because

developers already see AI as a partner. Bird et al. (2022) found developers describing the

relationship with AI as symbiotic, with AI having an active role in development. When

GitHub Copilot suggests code that solves a problem the developer hadn't fully articulated, it's

not just responding to commands. It's participating in problem-solving. It is not a passive tool

but engaging the user directly and sometimes leading the creation of code.

Callon (1986) translation process shows how AI becomes embedded in development

networks. Problematisation stage occurs when organisations flag their competitive

disadvantage without using AI tools. Intersegment, by which actors attempt to impose and

stabilise the identity of other actors by creating mechanisms that lock actors into set roles

within the network. For AI adoption this happens with pilot programs, trainings and incentive

structures that position AI tools as indispensable. Enrolment sees developers onboarding new

AI-mediated practices. Mobilisation is the achievement of stable AI-integrated workflows.

Law (2009) "network multiplicity" also can be used to describe why developers use AI for

some tasks and not others. This can be analysed by ANT by considering each task as a

parallel network. AI-augmented for new projects, traditional processes for legacy systems,

creating what he terms "partially connected" networks that challenge binary enrolled/not-

enrolled categorisations.

Law's approach allows actors to simultaneously participate in multiple, overlapping networks

with different rules and relationships. This is more accurate to how developers navigate

between AI-assisted and traditional development practices rather than simply adopting or

rejecting AI tools wholesale. In modern research on AI integration into work tasks (Barke et

al., 2023), developers have been seen shifting between stages of integration, using AI coding

tools in specific tasks while resisting in others.

2.3 Affordance-Actualisation Theory: Why Tools have Different User Outcomes

ANT explains network reconfiguration; AAT can be used to explain why the same AI coding

tools produce different outcomes for different users. Strong et al. (2014) organisational

affordance actualisation framework identifies three components to analyse tool use with

6

affordance existence (what technology allows), affordance perception (what users recognise)

and affordance actualisation (what happens in practice).

This framework, building on Gibson (1979) ecological psychology and Markus and Silver

(2008) IS adaptation, explains the varying levels of transformation among users. This

framework can move beyond deterministic views of technology adoption to explain how

organisational and individual factors shape the context which dictates how technology is

used. This is crucial for understanding why some developers adopt AI tools while others

resist despite using identical technology. Star and Griesemer (1989) "boundary objects"

concept helps here, AI tools mean different things to different communities or users while

maintaining enough coherence to enable collaboration and mutual comprehension.

Volkoff and Strong (2013) can help explain the effect of organisational context on how an AI

coding tool is used. A senior developer in a startup accepts AI's "rapid prototyping" use and

implements it. A junior developer in banking may know about use for the AI Coding tool to

prototype, but organisational policies prevent the junior for using the tools in specific way.

This means transformation is not dictated solely on technology capability, but the complex

interplay of perception, intention, and context.

For example, Strong et al. (2003) research on electronic health record implementation found

that the hospitals had access to the same data visualisation tools, yet only the hospitals with

analytical culture and dedicated resources used these tools into improved patient outcomes.

While the term "collaborative affordances" requires further theoretical development, recent

research on human-AI interaction patterns (Gomez et al., 2024) reveals how human-AI

partnerships allow for the creation of new processes that were not possible before

implementation. Yet this work exhibits success bias documenting mostly successful

integration of AI coding tools while ignoring failed attempts, abandoned adoptions and

refused affordances.

2.4 AI Coding Tool Productivity Increases and Task Augmentation

Peng et al. (2023) GitHub study is a corner stone paper for the productivity narrative that

dominates discourse. Their controlled experiment found 55.8% faster task completion with

Copilot, and this become the most-cited metric in academic and industry discussions. But this

metric obscures a deeper change code produced.

7

However, methodological scrutiny reveals significant limitations on their findings. Tasks

were artificially constrained with clear specifications while success was measured on

completion time only. In addition, code quality metrics were absent. This approach provided

valuable baseline data but failed to capture the complexity of real-world development where

requirements are ambiguous, quality depends on more than speed, and long-term

maintainability is essential.

Ziegler et al. (2022) found context matters in AI coding tools increasing productivity, finding

gains in only new projects, and seeing productivity losses in legacy code bases and older

projects. More concerning: Osmani (2024) documents the "70% problem". Developers accept

70% of AI suggestions but cannot evaluate their quality. Brynjolfsson et al. (2023) found

similar patterns in other fields, impressive metrics hiding capability erosion.

2.5 Concern on AI Code Security and Declining Developer Skills

The phenomenon of "competence without comprehension" is empirically underexplored. The

absence of any longitudinal studies tracking skill evolution represents a critical gap in

literature. The universal concern about junior developer mentorship which was documented

across industry discussions (Engineering Enablement, 2025) reveals communities recognising

threats to existence.

Industry voices confirm fears. Osmani (2025a) warns of "skill atrophy," while Goel (2025)

documents juniors who "can't actually code" without AI. The profession risks what Polanyi

(1966) called losing "tacit knowledge" the unexplainable expertise that defines mastery.

Developers are losing what Schön (1983) would call "reflection-in-action." They produce

without understanding, breaking the feedback loop essential to expertise.

Security concerns are also an underexplored risk. Perry et al. (2023) analysis of Copilot-

generated code found that 40% of code contained security vulnerabilities, significantly higher

than human code. Even then developers expressed increased confidence in that code despite

producing less secure code. METR (2025) randomised controlled trial found that senior

developers were 19% slower using AI tools despite thinking they were 20% more productive.

Traditional metrics like quality of code or quantity of task completion become meaningless

when developers shift from writing to orchestrating, from creating to curating.

8

2.6 Identity and Role Perception

In Wenger (1998) communities of practice framework, though sparingly applied to AI

transformation, offers unique insights. Professional communities maintain identity through

shared practices, languages, and values. AI tools fracture these communities. When

developers "pair program" with AI while others maintain traditional practices, this shared

identity erodes.

This pattern echoes earlier technological transformations. Braverman (1974) and Noble

(1984) documented how numerical control systems in manufacturing did not just make

production faster, they fundamentally altered what it meant to be a machinist. Skilled

craftsmen who understood materials and processes became machine operators who followed

programmed instructions. The parallel is striking, today's developers risk transitioning from

code craftsmen who understand logic and architecture to AI operators who orchestrate

outputs they cannot fully explain. Acemoglu and Autor (2011) formalised this with their

findings, seeing how technology replaced previously routine tasks and created new required

skill for developers.

2. 7 AI Coding Tool Infrastructure

Hanseth and Lundberg (2001) argue that the infrastructure around specific tasks does not just

help complete the tasks, but it fundamentally shapes what the task requires from the users.

This insight proves crucial for AI coding tools. Organisations are not just adopting AI; they

are building entire task infrastructures around it.

Google Cloud (2025) documents how leading organisations create comprehensive AI

systems: prompt libraries that capture coding patterns, workflow templates that standardise

AI interaction, and knowledge bases formatted for AI consumption. These are not just

efficiency tools. Following Latour (1987), they function as "inscription devices “mechanisms

that capture human knowledge and stabilise it in forms AI can reliably use.

The AI tool infrastructure emerging in recent studies exemplifies theoretical integration.

Through ANT, infrastructure represents "inscription devices" (Latour, 1987) that stabilise

new actor-networks and task completion processes. Organisations building proprietary

prompt libraries, custom AI training, and specialised workflows gain exponentially more

value than those using generic tools.

9

2.8 Conclusion

The integration of Actor-Network Theory with Affordance-Actualisation Theory provides a

framework for understanding AI tools as active participants in development networks, whose

impacts vary based on contextual factors. This perspective reveals that developers engage

with AI through distinct patterns from comprehensive integration to selective use to minimal

adoption rather than following universal trajectories. By combining ANT's recognition of AI

agency with AAT's explanation of differential outcomes, we can investigate how developers

are not just adopting tools but how they are co-evolving with AI in ways that create divergent

professional futures. This framework will be used to guide our empirical investigation into

how AI coding tools transform professional practice. This theoretical integration of Actor-

Network Theory and Affordance-Actualisation Theory provides the conceptual foundation for

investigating how developers navigate AI tool transformation.

10

Chapter 3: Methodology

 3.1 Research Design and Philosophy

This study employed semi-structured interviews with 14 software developers to explore how

AI coding tools transform professional practice. An interpretive approach was used in this

research to understand how AI coding tools transform software developers' professional

practice.

The research utilises Actor-Network Theory (Latour, 2005) and Affordance-Actualisation

Theory (Strong et al., 2014), recognising technology adoption as socially constructed rather

than technologically determined. ANT reveals how AI coding Tools become active network

participants, while AAT explains why identical tools produce different outcomes. This dual-

lens approach proved essential for understanding both transformation mechanics and

variation.

3.2 Systematic Literature Search Strategy

This review employed Webster and Watson (2002) systematic search strategy to ensure broad

coverage. My initial searches across ACM Digital Library, IEEE Xplore, AIS Electronic

Library, Web of Science, ArXiv and Google Scholar using paired combinations like ("AI

coding tools" or "GitHub Copilot" and "AI pair programming") and ("transformation" with

"adoption" or "skills" or "identity") paired with ("developer" or "developer").

There was a focus on papers published between 2022-2025. AI coding tools only became

fully relevant in the context of our research which mandated the cut off. Given the speed of

progress in these tools, preprint studies that are highly cited and renowned are used as they

are relevant to the specific circumstances I am researching.

Paper Inclusion Criteria:

• Published 2020-2025 (coinciding with AI coding tool emergence)

• Empirical evidence (not purely speculative)

• Focus on transformation/practice change (not just productivity)

• Peer-reviewed or highly cited preprints

11

3.3 Ethical Considerations

This research received LSE Research Ethics Approval (Reference number: 550382) in June

2025. Participants received detailed information sheets and provided written consent for

recording and transcription (See Appendix A for Consent forms). Pseudonyms (P001-P014)

replaced identities within 24 hours, with their organisation removed before analysis as well.

All participants received detailed information sheets explaining the research purpose, data

usage, and their rights and additional verbal approval to record and create a transcript was

obtained at the beginning of each interview. All participant data will be deleted six months

post-dissertation submission.

3.4 Participant Selection and Recruitment

Purposive sampling targeted maximum variation in AI coding Tool adoption approaches. I

began by identifying potential participants through my professional network and LinkedIn,

specifically seeking developers with diverse experiences with AI coding tools. My selection

criteria evolved through initial conversations: I prioritised variation in company size,

geographic location, years of experience, and, crucially, attitudes toward AI adoption, from

enthusiastic early adopters to principled resisters. Inclusion criteria required minimum 3 years

of development experience, or 2 years and a master’s degree. The sample spanned six

countries, company sizes from 15 to 10,000+ employees. There is likely to be bias towards AI

tools as these participants are more likely to engage with research on AI coding tool use, but

an effort was made to also include those open resistors.

Table 1: Participant Demographics Summary.

12

3.5 Data Collection

Semi-structured interviews (19-42 minutes, average 30.6) were conducted July-August 2025

via Microsoft Teams. The questions were designed to elicit narrative responses rather than

simple yes/no answers, encouraging participants to share specific examples and reflect on

their changing practices. Interview was designed to take 20-25 minutes per participant; I did

have great interviews with some participants who were happy to discuss topics at great depth

which is why some interviews stretch to 40+ minutes.

 The protocol evolved through three iterations:

• Version 1 (P001-P003): General AI usage exploration

• Version 2 (P004-P009): Added infrastructure questions after P001's emphasis.

• Version 3 (P010-P014): Incorporated identity and junior developer concerns

Questions covered the participants professional background, introduction to AI, use and

changes to their role’s tasks, new skills required for AI and future perspectives on

development. My interview technique evolved from general exploration to targeted probing.

Early interviews accepted productivity claims uncritically; in later interviews I explored costs

and trade-offs. This evolution, while potentially introducing inconsistency, enabled richer

understanding of transformation complexity. A copy of the interview guide can be found in

the Appendix E.

3.6 Data Analysis Analytical Approach

I employed thematic analysis (Braun and Clarke, 2006) to identify, analyse, and track patterns

within the interviews. This approach allowed me to move beyond surface descriptions to

interpret the deeper meanings participants attached to their AI adoption experiences. Through

iterative coding and theming processes, I developed a nuanced understanding of how

developers navigate the transformation of their professional practice. There was only one

researcher coding these interviews which does increase the risk of bias.

3.7 Analysis Software and Coding Process

Data management utilised NVivo 14 for systematic coding and retrieval. Interviews were

transcribed using Otter.ai with manual verification for technical terminology. Analysis

followed Braun and Clarke (2006) six-phase thematic analysis enhanced by theoretical

13

sensitivity from ANT and AAT frameworks. Initial coding produced 94 codes, refined

through constant comparison to 56 consolidated codes organised into 12 categories.

Figure 1: Coding Quotes into Themes: This shows of the coding process used in the thematic

analysis. Raw interview quotes were systematically coded, collecting participant statements

to initial descriptive codes, then grouped into conceptual categories, and finally organised

into thematic clusters that show distinct patterns of AI adoption.

Figure 2: Thematic Analysis Coding Tree - How clustering functioned to create the three

clusters.

3.8 Researcher Reflexivity

As someone who uses AI coding tools, I brought both insight and bias. Before the study I

would have assumed:

• A high level of adoption of AI coding tools

• Most companies implement basic tools top down onto employees.

14

• Adoption patterns based on age.

• Universal productivity increases

• Skill loss and gradual separation of developers from the code

• Threats to junior roles and learning code via AI.

My personal relationship with AI coding tools evolved throughout this research. As an active

GitHub Copilot user, I initially viewed AI coding tools through an optimisation lens, focusing

on productivity gains.

However, three critical moments shifted my perspective: P003's observation about

"automating away customers" challenged my productivity-focused assumptions; P008's

journey from over-dependence to selective adoption revealed non-linear transformation paths;

and P013's principled resistance reframed rejection as potentially strategic rather than

regressive. This evolution influenced later interviews, where I probed more deeply into costs

and trade-offs rather than accepting benefit claims uncritically.

3.9 Alternative Interpretations

The three clusters could reflect personality types, organisational cultures, or career stages

rather than AI-specific transformation. The small sample prevents definitive causal claims.

Economic pressures and job security concerns may influence participants' narratives about AI

adoption.

15

Chapter 4: Findings

This chapter presents findings from thematic analysis of 14 semi-structured interviews with

software professionals. Through the coding of 428 minutes of interview data three distinct

clusters emerged, each representing fundamentally different approaches to integrating AI into

professional practice.

4.1 Three Transformation Clusters

Analysis of these fourteen interviews revealed three patterns to AI coding Tool use among the

participants. These clusters, Complete Transformers (n=5, 36%), Selective Adopters (n=7,

50%), and Conscious Resisters (n=2, 14%), represent the different level of tool integration

into their jobs. The distribution of the participants indicates the adoption of AI Coding tools is

not a universal experience and has many factors that influence it. The clusters are grouped

based on their overall level of AI coding Tool adoption, but transformation is a spectrum with

each participants transformation being unique. These clusters work as more of a general

classification of developer rather than a firm white and black interpretation. These three

patterns emerged from this sample and may not represent all developer experiences.

4.1.1 Complete Transformers: Developers Who Fully Embraced AI Coding Tools.

Five participants described a complete change in their development practices. This cluster

included developers across startups to massive enterprises. Their experience ranged from 3-8

years, suggesting transformation isn't solely linked to career stage or experience.

Identity Transformation and Current Role Perception of Complete Transformers

Participants in this cluster expressed fundamental shifts in professional identity:

"I'm the teacher now. I spend my days teaching the AI what I want, guiding it through

iterations. It's completely changed how I work; I don't write code anymore; I educate AI

systems. I'm more professor than programmer now." (P001, Startup Developer)

"I'm managing AI students. I'll have one AI working on the API, another on the frontend,

another writing tests, while I'm orchestrating and integrating. It's like running a development

team where the developers never sleep, never complain, but also never truly understand."

(P002, Healthcare ML Engineer)

16

P005 expressed the most radical identity shift: "I just get things done now. Don't call me a

developer, I'm a solution creator. The code is just a byproduct of solving problems. My

clients don't care if I wrote it or AI did, they care that it works."

Personal AI coding Tool infrastructure

AI tool infrastructure or infrastructure scaffolding is the creation of collection interconnected

tools and processes that developers create to integrate multiple AI coding tools. Rather than

using a single AI coding Tool in isolation, developers build comprehensive systems: GitHub

Copilot for code generation, ChatGPT for architecture discussions, Claude for

documentation, and specialised models for testing - all coordinated through custom

workflows. This infrastructure includes version-controlled prompt templates, automated

validation pipelines that check AI-generated code, knowledge bases that preserve successful

patterns, and feedback loops that continuously improve their AI coding tools performance.

All Complete Transformers described building AI infrastructure to support their transformed

practices. P001 detailed "50+ markdown files containing organisational memory, best

practices, error patterns, success templates," emphasising that "this infrastructure is what

makes me 5x more productive than before." These files were organised hierarchically:

company policies at the top, project-specific patterns in the middle, and daily prompts at the

bottom.

P002 reported requiring "three months of healthcare-specific implementation" to address

domain requirements before achieving productivity gains. This investment included creating

specialised prompts for HIPAA compliance, medical terminology databases, and edge-case

documentation specific to patient data handling.

P004's organisation "built internal AI coding tools trained on years of documentation,"

creating what they described as "having a senior developer who knows everything about our

systems, every API endpoint, every database schema, every business rule from the past

decade."

Despite embracing transformation, participants expressed systemic concerns:

"We're seeing 5x productivity gains, easily. But here is the thing, our product helps businesses

reduce headcount. We are automating away our own customers. What happens when every

company needs 80% fewer developers?" (P003, Enterprise Developer)

17

4.1.2 Selective Adopters: Adopts AI Coding Tools but Uses Them Selectively

Seven participants described maintaining deliberate boundaries while integrating AI coding

tools. This cluster represented the largest group, spanning banking, aviation, fintech, and

telecommunications sectors. Their experience ranged from 3-10 years, with regulatory

constraints often shaping boundary decisions.

Common AI Boundaries and Tool shortcomings

Participants consistently emphasised contextual decision-making:

"It's a tool, not a rule. I decide when and how to use it based on what is appropriate. Critical

path code, authentication, payment processing, data handling, which is all me. AI handles the

scaffolding around it." (P006, Banking Engineer)

P007 highlighted regulatory constraints: "Banking regulations mean some things must remain

under human control. I delegate UI components but never core transaction logic. Every line

of code touching money has my fingerprints on it."

These boundaries were not arbitrary but reflected what Schön (1983) might term "reflection-

in-action", professional judgment developed through experience about where AI assistance

helps versus hinders.

Learning Through Experience

P008's journey describes how his role has changed through task automation and code

generation.

"I went too deep with AI at first, lost touch with code, then pulled back. Now I know the

balance. I got to a point where I was going to write some unit tests and thought 'I shouldn't

need to ask AI how to do this.' That was my wake-up call."

This participant's described how AI lacks context on legacy system: "New features get maybe

50% checking. Anything touching existing systems gets line-by-line review. Legacy code has

decades of undocumented decisions, AI can't understand what nobody wrote down."

P009 observed community fragmentation: "The developer community is splitting. You have

AI evangelists who have drunk the Kool-Aid, balanced users trying to find middle ground,

and traditionalists clinging to the old ways. We're losing our shared language."

18

Skill Preservation Strategies Used by Developers.

P011 implemented structured preservation: "Every Friday is no-AI day. I code everything

manually to keep skills sharp. A master carpenter uses power tools but remains a carpenter. I

use AI coding tools but remain a developer."

P012 used AI for specific product management tasks: "User stories, acceptance criteria, test

scenarios, AI excels at structure. But understanding what stakeholders need versus what they

say? That's irreducibly human."

4.1.3 Conscious Resisters: Knowledge Preservation and AI Rejection

Two participants actively resisted AI integration while acknowledging its existence. Both had

6-10 years' experience and worked in contexts where deep understanding and code

complexity is more important compared to traditional full stack development.

Philosophical Stance

P013 articulated principled opposition:

"If you're using AI to do the work, you're not learning. You are just getting output. Someone

needs to preserve real understanding. While others become AI operators, I maintain true

developer knowledge."

When pressed, P013 admitted minimal adoption: "For tests, okay, it's repetitive enough that

AI makes sense. But if I must use it for a demo or something, I rewrite everything it produces

to ensure I understand every line."

Unexpected Value Creation

P014, despite forced compliance with company requirements, discovered unique positioning:

"I've become the go-to person for reviewing AI-generated code. Ironically, resisting AI has

made me more valuable because I can spot what others miss, the subtle bugs, the security

holes, the architectural anti-patterns that AI perpetuates."

4.2 Infrastructure Development Patterns

The research revealed how the studies participants across all clusters developed their AI

coding tool infrastructure, though the nature and purpose of these infrastructures varied

significantly on the tasks and role they have as a developer.

19

Infrastructure, as revealed in this study, represents organisational systems that amplify AI

coding tool capabilities through recursive knowledge accumulation. This finding extends

beyond individual tool use, revealing how organisations build systematic capabilities that

make AI coding tools exponentially more valuable than generic AI infrastructure. Across all

clusters, participants developed systematic capabilities representing what Star and Griesemer

(1989) term "boundary objects", artifacts coordinating between human and AI actors. These

infrastructures varied in scope and purpose but universally represented considerable time

investment for long term productivity increases.

4.2.1 Comprehensive Developer Infrastructure – Full Tool Integration

Complete Transformers commonly built comprehensive systems with organised prompt

libraries. They invested time developing domain-specific prompts for specialised tasks they

can use to quickly tackle common tasks. Their infrastructure is integrated access to their

organisation’s knowledge bases, connecting their tools to internal wikis, documentation, and

historical code.

4.2.2 Selective AI Infrastructure – Limited Tool Integration

Selective Adopters created systems featuring more extensive validation protocols with

specific checklists for AI-generated code. They developed legacy system integration

guidelines defining rules for when AI could modify existing systems. Their infrastructure was

limited and only focused on specific tasks they felt were beneficial but kept certain tasks

entirely in their own purview. AI delegation decisions, team collaboration frameworks

establishing protocols for AI-assisted pair programming, and quality assurance workflows

implementing multi-stage review processes for AI contributions.

4.3 Task Transformation Patterns

Analysis revealed both universal patterns and cluster-specific variations in task delegation,

suggesting certain tasks have inherent characteristics making them suitable or unsuitable for

AI assistance. These patterns align with Actor-Network Theory's concept of delegation,

where certain activities are redistributed within the human-AI network based on their

characteristics and the developer’s willingness to delegate that task to AI coding tools.

20

Figure 3: Illustrates these delegation patterns across clusters, revealing both convergent and

divergent approach.

Certain tasks showed consistent delegation across clusters:

Test writing (12/14 participants): "Deterministic input-output mappings" Documentation

(11/14 participants): "Explaining what exists" Boilerplate code (10/14 participants): "Patterns

repeated thousands of times" Data validation (9/14 participants): "Rule-based

transformations" API integration (8/14 participants): "Following documented patterns”?

P006 explained the consensus: "Tests are perfect for AI, repetitive, pattern-based, clear

success criteria. Even if it gets edge cases wrong, it's faster to fix than write from scratch."

4.3.2 Persistent Human Tasks Across Clusters

Conversely, specific tasks remained human-controlled:

Architecture design (0/14 delegated): "Requires understanding unstated requirements"

Security implementation (1/14 delegated): "Too high-risk for probabilistic solutions" Core

business logic (1/14 delegated): "Embeds crucial domain knowledge" Performance

optimisation (2/14 delegated): "Requires deep system understanding" User experience

decisions (0/14 delegated): "Needs human empathy and context"

P003 articulated shared reasoning: "AI can suggest patterns, but architecture requires

understanding business context, future scaling, team capabilities, things that exist in people's

heads, not documentation."

21

4.3.3 How Do They Validate and Review AI Generated Code.

Validation approaches varied systematically by cluster. Complete Transformers reported

minimal validation (20-30%), with P001 explaining: "Once you've trained the AI properly

with your infrastructure, it knows your patterns. I spot-check for logical coherence, not

syntax."

Selective Adopters validated contextually (50-80%), while Conscious Resisters maintained

complete validation. P013 noted: "Seeing AI's mistakes actually made me better at

understanding why certain patterns work. It's like teaching, you learn by correcting errors."

4.3.4 Vibe Coding: A Shift in Programming Practice and Code Generation

An unexpected finding among Complete Transformers was "vibe coding", an intuitive,

iterative approach to AI-assisted development representing a fundamental shift in

programming epistemology.

P001 articulated this practice: "I iterate with the AI until the solution feels right. It is more art

than science now. I can't always explain why something is correct, but I know it when I see

it."

This approach challenges traditional programming's emphasis on logical reasoning and

explicit understanding. Vibe coding operates through pattern recognition and intuitive

validation rather than formal verification. P002 noted: "It's like jazz improvisation, you have

a general direction but you're responding to what the AI gives you, building on it, redirecting

when needed."

22

Figure 4: Synthesis of these workflow transformations, demonstrating how each cluster has

reconstructed their development practice.

4.4 Emerging Skills in Software Development

Participants reported simultaneous skill acquisition and atrophy patterns varying by cluster,

suggesting transformation involves skill substitution rather than simple enhancement. This

finding resonates with Affordance-Actualisation Theory's emphasis on how technology

affordances reshape capabilities, the same AI coding tools afford different skill developments

based on how actors actualise them within their practice.

Each cluster developed distinct new competencies reflecting their transformation approach:

Complete Transformers acquired advanced prompt engineering capabilities for building

conversational architectures, multi-agent orchestration skills for managing parallel AI

processes, infrastructure design expertise for creating scalable knowledge systems, and rapid

technology adoption abilities for learning new frameworks through AI.

Selective Adopters developed boundary judgment skills for knowing when AI helps versus

hinders, hybrid workflow management capabilities for seamlessly switching modes, context-

specific validation expertise for risk-adjusted review strategies, and collaborative prompting

abilities for getting AI to explain its reasoning.

Conscious Resisters enhanced AI error detection capabilities for spotting characteristic AI

mistakes, traditional debugging mastery for understanding without assistance, deep

23

architectural understanding for seeing system-wide implications, and knowledge preservation

skills for documenting the undocumented.

4.4.2 Traditional Skill Trajectories

Self-reported skill retention varied dramatically, with participants showing awareness of

trade-offs. Complete Transformers acknowledged significant atrophy, with P001 admitting: "I

probably couldn't write a complex sorting algorithm from scratch anymore. But I can

architect systems 10x more complex than before. It's a different kind of capability."

4.5 The Junior Developer Crisis: Consistent Concern Among Participants

All participants, regardless of cluster affiliation, expressed concern about junior developer

skill development - the only finding achieving complete consensus across all interviews. This

aligns with industry observations about the "70% problem" where AI tools enable rapid initial

progress but struggle with the complex final stages of development (Osmani, 2024).

4.5.1Traditional Learning Disruption

P002 discussed their fears about junior engineer education: "Where will juniors learn

debugging when AI fixes errors instantly? How will they develop intuition without struggling

through problems? The struggle is where learning happens."

P006 emphasised practical implications: "When production breaks at 3 AM, you need

understanding, not just AI assistance. Where will juniors get that experience if they have

never debugged without help?"

This concern reflects broader industry patterns where AI tools may be creating what Osmani

(2025) terms a generation gap between those who learned programming fundamentals before

AI and those who are learning with AI from the beginning.

4.5.2 Organisational and Economic Impacts

P003 noted structural impacts: "Junior developers with AI can produce what previously

would have needed senior developers before. It is disrupting our whole team structure and

salary bands. Why pay senior rates for AI-augmented juniors?"

P014 identified mentorship breakdown: "Traditional mentorship is breaking down. Juniors

ask AI before asking seniors. We're losing knowledge transfer mechanisms that built this

profession."

24

4.6 Professional Futures: Divergent Visions on the future of developers

Participants' future projections reflected their cluster positioning and transformation

experiences. These visions revealed deep uncertainty about professional trajectories, with

each cluster imagining different endpoints.

P001 predicted radical discontinuity: "In five years, 'developer' will sound like 'typist', a

quaint historical role. We'll be AI conductors, not code writers."

P006 envisioned sustained hybridity: "There will always be need for humans who understand

both traditional development and AI capabilities. The boundary managers will become the

most valuable."

P013 anticipated cyclical return: "When AI-generated technical debt becomes crushing,

organisations will desperately seek developers who actually understand code. Mark my

words, traditional skills will command premium prices."

4.7 Summary

These findings reveal AI coding Tool integration as producing three distinct, stable

configurations rather than universal transformation. Infrastructure development emerged as

critical differentiator across all clusters, with each group building different systems to support

their transformation approach. While task delegation showed both convergent patterns (tests,

documentation) and persistent human domains (architecture, security), these patterns

reflected deeper epistemological shifts in how developers conceptualise their work.

The emergence of concepts like "vibe coding" and infrastructure scaffolding suggests AI

coding tools are not merely augmenting existing practices but creating fundamentally new

forms of development practice. The concerns expressed by all participants about junior

pipelines suggests this area warrants attention on the challenges emerge through the

implementation of these tools.

The diversity of responses, from Complete Transformers' radical reconstruction to Conscious

Resisters' principled preservation, indicates that professional practice transformation follows

multiple pathways rather than converging toward a single future state. These findings

contribute to understanding technology-mediated professional transformation by revealing

how identical tools can produce divergent outcomes based on how practitioners choose to

integrate them into their professional identity and practice.

25

Chapter 5: Discussion

This chapter interprets the findings through integrated theoretical lenses ANT and AAT,

examines how AI coding tools transform software development and discusses the three-

cluster framework that emerged from the analysis.

5.1 Addressing the Research Objectives

Having demonstrated how the research objectives have been addressed through empirical

investigation, these findings now enable significant theoretical contributions that extend

beyond the immediate context of software development.

5.1.1 Task Allocation and Agency Distribution (Objective 1)

The first objective examined how AI coding tools reconfigure task allocation, these findings

reveal complex patterns of task reallocation that extend beyond simple delegation. Universal

delegation of testing (86%), documentation (79%), and boilerplate code (71%) represents

what Latour (1986) terms "obligatory passage points", tasks where AI achieves network

enrolment across all configurations. This contrasts sharply with Peng et al. (2023)

productivity focus, revealing transformation as fundamental practice restructuring rather than

efficiency enhancement.

Complete Transformers' parallel development model, orchestrating multiple AI agents

simultaneously, represents unprecedented agency distribution. When P002 describes

"managing AI students," this is not metaphorical but reflects genuine agency redistribution

where AI actors make autonomous decisions within bounded contexts. This empirical finding

extends ANT beyond Callon (1986) human-centric translation model, suggesting AI achieves

what I term "bounded actor status", autonomous within defined parameters while remaining

subordinate to human orchestration.

Conversely, universal retention of architecture design (100%), security implementation

(93%), and core business logic (93%) challenges technological determinism prevalent in

current literature. These boundaries persist not from technical limitations but from what

participants identified as irreducibly human competencies: contextual understanding, ethical

judgment, and tacit knowledge integration (Schön, 1983).

26

5.1.2 Emergent Competencies and Skill Transformation (Objective 2)

The second objective identified emergent competencies, in the findings we saw skill

evolution patterns directly contradict linear upskilling narratives dominating practitioner

discourse (Brynjolfsson et al., 2023). Infrastructure scaffolding emerges as the critical meta-

competency, not individual prompt engineering but organisational capability building. This

finding aligns with Hanseth and Lundberg (2001) work-oriented infrastructures while

extending it to human-AI contexts.

Complete Transformers' skill profile presents a paradox unaddressed in literature: traditional

skill atrophy (manual coding 45% retained) coupled with claimed enhanced capabilities

("architect systems 10x more complex"). This is not simple substitution but fundamental

competency restructuring. Their "vibe coding" practice, iterating with AI until solutions "feel

right", represents new epistemic practice where validation shifts from logical verification to

intuitive assessment.

This phenomenon of vibe coding deserves deeper theoretical exploration. It represents what

Polanyi (1966) termed "tacit knowledge" but inverted, rather than explicit knowledge

becoming tacit through practice, AI enables tacit pattern recognition to replace explicit

reasoning. Participants describe "knowing" when code is correct without being able to

articulate why, suggesting AI coding tools enable a form of intuitive programming that

bypasses traditional logical scaffolding. This epistemic shift has profound implications for

how we conceptualise programming expertise, moving from rule-based reasoning to pattern-

based intuition mediated by AI collaboration.

Selective Adopters' balanced approach (75% traditional skill retention) appears optimal but

carries hidden costs. P011's "no-AI Fridays" reveals the exhausting vigilance required to

maintain dual competencies.

5.1.3 Professional Identity Reconstruction (Objective 3)

The third objective explored professional identity reconstruction, the identity transformation

patterns reveal deeper complexity than Wenger (1998) community of practice framework

suggests. Rather than shared practice evolution, we observe community fragmentation into

distinct professional subspecies. Complete Transformers' educational metaphors ("teacher,"

"professor," "orchestrator") represent not role expansion but fundamental identity

replacement.

27

The universal junior developer concern transcends individual transformation, revealing

collective anxiety about professional reproduction. This finding extends beyond previous

technological transitions (such as the shift from manual coding to IDEs or the adoption of

Stack Overflow) because AI disrupts the apprenticeship model itself. When P009 observes

"juniors ask AI before asking seniors," this represents breakdown of knowledge transfer

mechanisms essential for community sustainability.

Conscious Resisters' identity as knowledge guardians provides unexpected insight. Their

value increases precisely because others abandon traditional skills, creating what labour

economists’ call "skill complementarity" (Acemoglu and Autor, 2011), their expertise

becomes more valuable as it becomes rarer. This challenges success-biased adoption

literature by revealing resistance as potentially rational career strategy.

5.2 Theoretical Contributions

5.2.1 AI coding tool Infrastructure

Infrastructure extends beyond individual tool use to organisational capability building. These

finding challenges individual-focused adoption models (TAM, UTAUT) by revealing

competitive advantage arising from systematic amplification systems rather than individual

proficiency (Venkatesh et al., 2003).

However, infrastructure creates what I term "capability lock-in". The same systems enabling

productivity may constrain future flexibility. P001's 50+ markdown files require constant

maintenance; P004's enterprise integrations create vendor dependencies. This dark side of

infrastructure investment remains unexplored in enthusiastic practitioner accounts.

Infrastructure emerges as potential differentiator in successful AI coding tool use, yet this

finding carries troubling implications. As organisations build proprietary AI amplification

systems, they create new forms of technical debt and vendor lock-in. The same infrastructure

enabling today's productivity gains may become tomorrow's legacy burden, a possibility

developer has not fully considered in their transformation.

5.2.2 The Network-Affordance Integration Model

This study's primary theoretical contribution synthesises ANT and AAT to explain differential

transformation outcomes. Rather than treating network position and affordance perception as

independent variables, common in existing IS literature. Typically, this model reveals their

28

recursive relationship. Network position shapes which affordances actors can perceive

(Complete Transformers' reconstructed networks enable seeing AI as collaborative partners),

while affordance actualisation patterns recursively reshape networks (infrastructure

investments lock in transformation pathways).

P008's journey empirically demonstrates this recursion: enthusiastic adoption → over-

dependence → network degradation → affordance re-evaluation → selective adoption. This

movement between clusters reveals transformation as dynamic process rather than stable

state, suggesting clusters represent temporary equilibria subject to disruption.

The model addresses a critical gap in Strong et al. (2014) framework, which assumes

successful actualisation. By documenting failed actualisations and conscious non-

actualisation, this study reveals the complete actualisation spectrum, including resistance as

legitimate outcome rather than failure.

Figure 5: Illustrates this recursive relationship between network position and affordance

perception.

29

5.2.3 Three-Cluster Framework

Rather than adoption stages, the three clusters that emerged from the research represent

configurations with distinct advantages:

• Complete Transformers: Maximum productivity at dependency cost.

• Selective Adopters: Sustainable balance through specific task selection.

• Conscious Resisters: Protecting Code Output from AI mistakes.

This framework challenges stage models' teleological assumption of convergence toward

universal adoption. Instead, ecosystem diversity may prove essential for professional

resilience, with each cluster serving distinct market needs (March 1991).

5.3.4 Transformation Beyond Just Productivity

Peng et al. (2023) 55.8% productivity gain narrative obscures transformation complexity

revealed here. Productivity metrics fail to capture identity reconstruction, skill atrophy, or

infrastructure investment costs. More critically, they assume productivity equals value. P003's

reflection on "automating away our own customers" reveals productivity's potential self-

destructiveness.

The "70% problem" documented by Osmani (2024) illustrates this complexity. While AI tools

dramatically accelerate initial development phases, they struggle with the nuanced final

stages that require deep understanding. This creates a false sense of productivity that may

mask growing technical debt and reduced comprehension.

Unlike studies celebrating AI adoption (Bird et al., 2022; Brynjolfsson et al., 2023), this

research documents resistance as rational strategy. Conscious Resisters are not technophobes

but strategic actors positioning for future value when deep understanding becomes scarce.

5.4 Practical Implications

5.4.1 Organisational Strategies from These Findings

This research indicated that organisations might benefit from considering abandon

convergence assumptions and support cluster diversity:

For Complete Transformers: Invest in infrastructure while maintaining skill redundancy.

Create "break-glass" protocols for when AI systems fail. Document tacit knowledge before it

disappears.

30

For Selective Adopters: Provide boundary clarification tools and decision frameworks.

Recognise the exhausting nature of constant boundary negotiation. Create spaces for

reflection and adjustment.

For Conscious Resisters: Value their role as quality guardians and error detectors. Position

them in code review and architectural oversight roles. Preserve their expertise through formal

knowledge transfer programs.

5.4.2 Addressing the Junior Developer Crisis

The universal concern about junior pipelines suggests areas for consideration:

1. Redesign Learning Pathways: Create structured struggles that develop debugging

intuition.

2. Hybrid Mentorship Models: Combine AI assistance with human guidance.

3. Competency Frameworks: Redefine what constitutes junior developer expertise in AI

age.

4. Protected Learning Spaces: Establish "AI-free" zones for fundamental skill

development.

5.4.3 Individual Developer Strategies

Developers might consider conscious cluster choices based on career goals and risk tolerance:

• Choose Complete Transformation for maximum short-term productivity accepting

obsolescence risk.

• Choose Selective Adoption for sustainable balance accepting constant negotiation

burden.

• Choose Conscious Resistance for deep expertise betting on future scarcity value.

Movement between clusters remains possible and encouraged, developers should view the

current position as a strategic choice rather than permanent identity.

5.5 Implications of Advancing AI Capabilities

As AI coding tools improve, these patterns may evolve along with the technology. Complete

Transformers might become more dependent or find new boundaries. Selective Adopters may

need to continuously readjust their boundaries. Conscious Resisters might find their expertise

31

valuable but also could be outpaced by people using AI coding tools. New patterns might

emerge beyond these three clusters This study captures a specific moment; longitudinal

research is needed to track pattern stability. The conclusion now synthesizes these insights to

address the central research question and chart directions for future investigation.

32

Chapter 6: Conclusion

6.1 Answering the Research Question

This dissertation began by questioning whether developers are simply adopting new tools or

experiencing fundamental professional reconstruction. The evidence clearly supports the

latter, revealing transformation as ecosystem diversification rather than convergent adoption.

The 14 developers in this study demonstrated three different approaches: Complete

Transformers who reconstruct their identity around AI orchestration, Selective Adopters who

maintain strategic boundaries through constant negotiation, and Conscious Resisters who

preserve traditional expertise as future competitive advantage. This is not linear progression

it's ecosystem diversification, with each approach representing a viable response to AI

disruption.

Beyond individual transformation lies a collective crisis: the breakdown of professional

reproduction. Every participant, regardless of cluster, expressed concern about junior

developers. When AI automates entry-level tasks, traditional learning through struggle

disappears, threatening the tacit knowledge development essential for expertise.

6.2 Theoretical Contributions

The Network-Affordance Integration Model developed through this research advances IS

theory by revealing transformation as recursive causality. Network position shapes what

developers see as possible with AI, while their choices reshape their position creating

divergent evolution rather than convergent adoption.

ANT revealed how AI becomes an active participant reshaping development network, when

developers describe "managing AI students," they recognise AI's actor status. AAT explained

why identical tools produce three different patterns based on organisational context and

individual perception. Together, they show transformation emerging from network-affordance

configurations, not individual choice, or technological determinism.

Infrastructure scaffolding was consistent throughout the interviews. Complete Transformers'

elaborate systems of prompt libraries and documentation create exponential value, while

Selective Adopters' boundary protocols enable sustainable practice. Yet this infrastructure

creates its own trap. Today’s competitive advantage becomes tomorrow's technical debt.

33

 The emergence of 'vibe coding' where developers iterate until solutions 'feel right' without

understanding why this represents a fundamental shift from logical to intuitive programming,

raising questions about the nature of programming expertise. Increased code will be produced

without the creator understanding how it works, we could see this trend continue as AI tools

become so good that human coders are no longer competitive.

Table 2: Research Contributions Summary

6.3 Practical Implications

For Organisations: Competitive advantage may come from supporting diversity, not forcing

convergence. Innovation benefits from Complete Transformers, stability emerges from

Selective Adopters, quality assurance strengthens through Conscious Resisters. Organisations

may benefit from all three operating in productive tension.

Specific practices illustrate these differences. Complete Transformers validate only 20-30%

of AI output, trusting their infrastructure to ensure quality. Selective Adopters validate 50-

80% based on context, with some implementing 'no-AI Fridays' to preserve skills. Conscious

34

Resisters maintain 100% validation, catching subtle errors others miss. Notably, all clusters

delegate testing to AI but preserve architecture design for humans, revealing shared

boundaries even amid divergence.

For Education: Traditional mentorship models assuming gradual skill building face

disruption. Institutions might consider developing parallel pathways:

• AI-native curricula for orchestration skills

• Hybrid programs balancing traditional and AI-augmented abilities.

• Preservation tracks maintaining deep technical expertise.

For Individuals: Career choices may involve conscious trade-off evaluation:

• Complete Transformation: Maximum productivity, maximum dependency

• Selective Adoption: Sustainable balance, constant boundary work

• Conscious Resistance: Deep expertise, betting on scarcity value

6.4 Limitations of the Study

The underrepresentation of Conscious Resisters (n=2) particularly limits claim about

resistance patterns. Analytical Constraints Single-researcher coding, while systematic it lacks

inter-rater reliability validation. The exclusive reliance on self-reported data without

behavioural observation means findings capture perceptions rather than verified practices.

The three clusters represent analytical patterns in this data, not definitive categories.

Contextual and Temporal Boundaries Findings reflect Western, English-speaking contexts

and may not apply to other cultural or regulatory environments. The cross-sectional design

during rapid AI evolution means these patterns may already be shifting. What appears stable

in 2025 may prove transitional as AI capabilities advance.

6.5 Future Research Imperatives

Longitudinal Studies: Track cluster stability over 2-3 years. Do Complete Transformers

sustain enthusiasm as complexity grows?

Cross-Cultural Analysis: How do collectivist cultures shape patterns? How do regulations

influence boundaries?

35

Junior Developer Focus: How can the profession transfer knowledge without traditional

pathways? What defines expertise in AI-mediated contexts? Can we design learning that

develops both AI fluency and fundamental understanding?

AI Evolution: As AI capabilities advance, these patterns may intensify rather than converge.

Better AI could make Complete Transformers more dependent, force Selective Adopters to

constantly readjust boundaries, and either vindicate or make Conscious Resisters obsolete.

The clusters might diverge further rather than merge, creating even more specialised

professional subspecies.

6.6 Broader Significance

Software development's transformation previews knowledge work's AI-mediated future. As

legal research, medical diagnosis, and engineering design face similar disruptions, our

findings offer crucial insights. The three-cluster framework demonstrates that professions

need not converge on single practices, showing diversity enables resilience.

This challenges techno-solutionist narratives. Productivity gains carry hidden costs: skill

atrophy, infrastructure dependencies, reproduction crises. Most fundamentally, professional

identity suggest that it is more fluid than acknowledged. Participants did not just adopt tools;

they reconstructed what it means to be a developer. From "code writers" to "AI teachers,"

from "developers" to "orchestrators," these shifts represent profound reformation requiring

support as AI transforms knowledge work.

6.7 Final Reflections

These findings suggest the profession might benefit from maintaining this ecosystem

diversity, not identifying a "winning" approach. Wisdom lies not in predicting the dominance

of one approach but accepting the diversity. At this inflection point, the choice is not whether

to embrace or resist AI, but how to consciously shape your personal professional practice in

software developement. Their divergent paths illuminate not just software development's

future, but the transformation awaiting knowledge work in the AI era. The developers in this

study, if orchestrating these AI symphonies, negotiating careful boundaries, or preserving

traditional craft they are engaged in the essential work of professional reformation.

36

References

Acemoglu, D., & Autor, D. (2011). Skills, tasks and technologies: Implications for

employment and earnings. In O. Ashenfelter & D. Card (Eds.), Handbook of labor economics

(Vol. 4, pp. 1043-1171). Elsevier. https://doi.org/10.1016/S0169-7218(11)02410-5

Ammar, A., Corda, V., Prisco, G., Foggia, M., Erra, U., & Colonnese, S. (2024). From today's

code to tomorrow's symphony: The AI transformation of developer's routine by 2030. arXiv

preprint arXiv:2405.12731. https://arxiv.org/html/2405.12731v1

Barke, S., James, M. B., & Polikarpova, N. (2023). Grounded copilot: How programmers

interact with code-generating models. Proceedings of the ACM on Programming Languages,

7(OOPSLA1), 85-111. https://doi.org/10.1145/3586030

Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk, T., &

Gazit, I. (2022). Taking flight with copilot: Early insights and opportunities of AI-powered

pair-programming tools. ACM Queue, 20(6), 35-57. https://doi.org/10.1145/3589996

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research

in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa

Braverman, H. (1974). Labor and monopoly capital: The degradation of work in the

twentieth century. Monthly Review Press.

Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at work (NBER Working

Paper No. 31161). National Bureau of Economic Research. https://doi.org/10.3386/w31161

Callon, M. (1986). The sociology of an actor-network: The case of the electric vehicle. In M.

Callon, J. Law, & A. Rip (Eds.), Mapping the dynamics of science and technology (pp. 19-

34). Macmillan.

Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Aldraiweesh, A., Alturki, U., Almutairy, S.,

Shutaleva, A., & Soomro, R. B. (2024). Extended TAM based acceptance of AI-Powered

ChatGPT for supporting metacognitive self-regulated learning in education: A mixed-

methods study. Heliyon, 10(8), e29317. https://doi.org/10.1016/j.heliyon.2024.e29317

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of

information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Engineering Enablement. (2025, April 2). 5 strategies for mentoring junior developers in the

AI era [Blog post]. https://engineeringenablement.substack.com/p/5-strategies-for-mentoring-

junior

Gibson, J. J. (1979). The ecological approach to visual perception. Houghton Mifflin.

GitHub. (2024). Survey: The AI wave continues to grow on software development teams.

https://github.blog/news-insights/research/survey-ai-wave-grows/

Goel, N. (2025, February 14). New junior developers can't actually code [Blog post].

https://nmn.gl/blog/ai-and-learning

https://doi.org/10.1016/S0169-7218(11)02410-5
https://arxiv.org/html/2405.12731v1
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3589996
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.3386/w31161
https://doi.org/10.1016/j.heliyon.2024.e29317
https://doi.org/10.2307/249008
https://engineeringenablement.substack.com/p/5-strategies-for-mentoring-junior
https://engineeringenablement.substack.com/p/5-strategies-for-mentoring-junior
https://github.blog/news-insights/research/survey-ai-wave-grows/
https://nmn.gl/blog/ai-and-learning

37

Gomez, C., Cho, S. M., Ke, S., Huang, C. M., & Unberath, M. (2024). Human-AI

collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted

decision making from a systematic review. Frontiers in Computer Science, 6, Article

1521066. https://doi.org/10.3389/fcomp.2024.1521066

Google Cloud. (2025). Real-world gen AI use cases from the world's leading organizations.

https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-

leaders

Gross, G. (2025, May 22). AI coding assistants wave goodbye to junior developers. CIO.

https://www.cio.com/article/3509174/ai-coding-assistants-wave-goodbye-to-junior-

developers.html

Hanseth, O., & Lundberg, N. (2001). Designing work-oriented infrastructures. Computer

Supported Cooperative Work, 10(3), 347-372. https://doi.org/10.1023/A:1011290912635

Holden, R. J., & Karsh, B. T. (2019). Beyond TAM and UTAUT: Future directions for HIT

implementation research. Journal of Biomedical Informatics, 100, 103315.

https://doi.org/10.1016/j.jbi.2019.103315

JetBrains. (2024). The State of Developer Ecosystem 2024.

https://www.jetbrains.com/lp/devecosystem-2024/

Latour, B. (1986). The powers of association. In J. Law (Ed.), Power, action and belief: A

new sociology of knowledge? (pp. 264-280). Routledge & Kegan Paul.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society.

Harvard University Press.

Latour, B. (2005). Reassembling the social: An introduction to actor-network theory. Oxford

University Press.

Law, J. (2009). Actor network theory and material semiotics. In B. S. Turner (Ed.), The new

Blackwell companion to social theory (pp. 141-158). Blackwell.

Leonardi, P. M. (2011). When flexible routines meet flexible technologies: Affordance,

constraint, and the imbrication of human and material agencies. MIS Quarterly, 35(1), 147-

167. https://doi.org/10.2307/23043493

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage.

March, J. G. (1991). Exploration and exploitation in organizational learning. Organization

Science, 2(1), 71-87. https://doi.org/10.1287/orsc.2.1.71

Markus, M. L., & Silver, M. S. (2008). A foundation for the study of IT effects: A new look at

DeSanctis and Poole's concepts of structural features and spirit. Journal of the Association for

Information Systems, 9(10), 609-632. https://doi.org/10.17705/1jais.00176

https://doi.org/10.3389/fcomp.2024.1521066
https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
https://www.cio.com/article/3509174/ai-coding-assistants-wave-goodbye-to-junior-developers.html
https://www.cio.com/article/3509174/ai-coding-assistants-wave-goodbye-to-junior-developers.html
https://doi.org/10.1023/A:1011290912635
https://doi.org/10.1016/j.jbi.2019.103315
https://www.jetbrains.com/lp/devecosystem-2024/
https://doi.org/10.2307/23043493
https://doi.org/10.1287/orsc.2.1.71
https://doi.org/10.17705/1jais.00176

38

METR. (2025). Measuring the impact of early-2025 AI on experienced open-source

developer productivity. https://metr.org/blog/2025-01-10-early-2025-ai-experienced-os-dev-

study/

Microsoft. (2024). AI at work is here. Now comes the hard part: 2024 Work Trend Index.

https://www.microsoft.com/en-us/worklab/work-trend-index/ai-at-work-is-here-now-comes-

the-hard-part

Noble, D. F. (1984). Forces of production: A social history of industrial automation. Knopf.

Orlikowski, W. J. (2007). Sociomaterial practices: Exploring technology at work.

Organization Studies, 28(9), 1435-1448. https://doi.org/10.1177/0170840607081138

Osmani, A. (2024, December 4). The 70% problem: Hard truths about AI-assisted coding

[Blog post]. Addy Osmani's Substack. https://addyo.substack.com/p/the-70-problem-hard-

truths-about

Osmani, A. (2025a, April 25). Avoiding skill atrophy in the age of AI [Blog post]. Addy

Osmani's Substack. https://addyo.substack.com/p/avoiding-skill-atrophy-in-the-age

Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of AI on developer

productivity: Evidence from GitHub Copilot. arXiv preprint arXiv:2302.06590.

https://doi.org/10.48550/arXiv.2302.06590

Perry, N., Srivastava, M., Kumar, D., & Boneh, D. (2023). Do users write more insecure code

with AI assistants? In Proceedings of the 2023 ACM SIGSAC Conference on Computer and

Communications Security (pp. 2785-2799). Association for Computing Machinery.

https://doi.org/10.1145/3576915.3623157

Polanyi, M. (1966). The tacit dimension. Doubleday.

Schön, D. A. (1983). The reflective practitioner: How professionals think in action. Basic

Books.

Stack Overflow. (2024). 2024 Developer survey. https://survey.stackoverflow.co/2024/

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, 'translations' and boundary

objects: Amateurs and professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39.

Social Studies of Science, 19(3), 387-420. https://doi.org/10.1177/030631289019003001

Strong, D. M., Volkoff, O., & Elmes, M. B. (2003). ERP systems and the paradox of control.

Proceedings of the Americas Conference on Information Systems, Tampa, FL.

https://aisel.aisnet.org/amcis2003/63/

Strong, D. M., Volkoff, O., Johnson, S. A., Pelletier, L. R., Tulu, B., Bar-On, I., Trudel, J., &

Garber, L. (2014). A theory of organization-EHR affordance actualization. Journal of the

Association for Information Systems, 15(2), 53-85. https://doi.org/10.17705/1jais.00353

https://metr.org/blog/2025-01-10-early-2025-ai-experienced-os-dev-study/
https://metr.org/blog/2025-01-10-early-2025-ai-experienced-os-dev-study/
https://www.microsoft.com/en-us/worklab/work-trend-index/ai-at-work-is-here-now-comes-the-hard-part
https://www.microsoft.com/en-us/worklab/work-trend-index/ai-at-work-is-here-now-comes-the-hard-part
https://doi.org/10.1177/0170840607081138
https://addyo.substack.com/p/the-70-problem-hard-truths-about
https://addyo.substack.com/p/the-70-problem-hard-truths-about
https://addyo.substack.com/p/avoiding-skill-atrophy-in-the-age
https://doi.org/10.48550/arXiv.2302.06590
https://doi.org/10.1145/3576915.3623157
https://survey.stackoverflow.co/2024/
https://doi.org/10.1177/030631289019003001
https://aisel.aisnet.org/amcis2003/63/
https://doi.org/10.17705/1jais.00353

39

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of

information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.

https://doi.org/10.2307/30036540

Volkoff, O., & Strong, D. M. (2013). Critical realism and affordances: Theorizing IT-

associated organizational change processes. MIS Quarterly, 37(3), 819-834.

https://doi.org/10.25300/MISQ/2013/37.3.07

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a

literature review. MIS Quarterly, 26(2), xiii-xxiii.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge

University Press.

Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A., Rifkin, D., Simister, S., Sittampalam, G., &

Aftandilian, E. (2022). Productivity assessment of neural code completion. In Proceedings of

the 6th ACM SIGPLAN International Symposium on Machine Programming (pp. 21-29).

Association for Computing Machinery. https://doi.org/10.1145/3520312.3534864

https://doi.org/10.2307/30036540
https://doi.org/10.25300/MISQ/2013/37.3.07
https://doi.org/10.1145/3520312.3534864

40

Appendix

Appendix A: Participant Consent Form

41

Appendix B: Detailed Methodology Documentation

B.1 Interview Protocol Evolution

Version 1 (P001-P003): Initial Protocol

1. Background

o Tell me about your role and programming experience.

o When did you first encounter AI coding tools?

2. Current Usage

o Which AI coding tools do you use?

o How often do you use them?

o What tasks do you use them for?

3. Impact

o How have these tools changed your work?

o What are the benefits and challenges?

Version 2 (P004-P009): Enhanced Protocol

Added after P001's infrastructure emphasis:

4. Organisational Context

o Does your organisation have AI coding Tool policies?

o What infrastructure supports AI coding Tool use?

o How do team dynamics change with AI coding Tools?

5. Skill Development

o Which skills have become more/less important?

o How do you maintain traditional coding abilities?

Version 3 (P010-P014): Final Protocol

Added after emerging themes:

6. Identity and Future

42

o How would you describe yourself professionally now?

o What concerns do you have about junior developers?

o Where do you see the profession heading?

B.2 Complete Code Definitions Table

Code Definition Example Quote Frequency

boundary_setting
Explicit decisions about

when/where to use AI

"Critical path code,

that's all me"
47

infrastructure_building
Creating systems to support

AI use

"50+ markdown files

with prompts"
31

educational_metaphors
Framing AI interaction as

teaching
"I'm the teacher now" 28

skill_atrophy
Acknowledged decline in

traditional skills

"Can't write algorithms

from scratch"
23

Interview New Codes Total Codes Confirmed Patterns Decision

8 12 78 6 Continue

9 7 85 8 Continue

10 6 91 11 Saturation likely

11 3 94 12 Saturation confirmed.

12-14 0 94 12 Validation only

Pre-Study Assumptions Map

Assumption Source How Challenged

Younger = more adoption Personal bias P011 (28) resisted, P005 (42) transformed

Productivity always good Tech enthusiasm P003's customer automation concern

43

Assumption Source How Challenged

Linear adoption stages TAM literature Three stable clusters emerged

Resistance = failure Success bias Resisters valuable for review

B.3 Data Security and Management Protocols

Security Measures

1. Recording Storage: LSE OneDrive with 2FA, encrypted.

2. Transcription Process: Used Teams AI transcription.

3. Anonymisation Protocol:

o Identity key stored separately (password-protected Excel)

o Company names replaced with descriptors.

o Locations generalised (e.g., "major European city")

4. Retention Schedule: All data deletion 6 months post-assessment

File Naming Convention

• Recordings: REC_P00X_YYYYMMDD.mp4

• Transcripts: TRANS_P00X_YYYYMMDD_ANON.docx

• Memos: MEMO_XX_YYYYMMDD.docx

Information Sheet Key Points

• Study purpose: Understanding AI coding Tool impact on professional practice.

• What is involved: 20–45-minute interview.

• Confidentiality: Full anonymisation

• Rights: Can withdraw until analysis begins

• Data use: MSc dissertation only

B.4 Theoretical Sampling Decisions

After Interview 8: Realised sample skewed toward adopters. Actively sought resisters.

44

After Interview 11: Three clusters clear. Sought additional participants to test boundaries

specifically looking for "edge cases" between clusters.

Decision to stop at 14: No new patterns emerging. Each cluster had minimum two

representatives. Pragmatic time constraints approaching.

B.5 Member Checking Process Detail

Stage 1: Transcript Verification

• Sent within 1 week of interview.

• Asked to verify accuracy, not change meanings.

• 12/14 responded with minor corrections (technical terms)

Stage 2: Interpretation Verification

• Selected one participant per cluster (P001, P008, P013)

• Sent cluster descriptions and key themes.

• Feedback incorporated:

o P001: Emphasised infrastructure took months to build.

o P008: Clarified organisational constraints influenced boundaries.

o P013: Confirmed resistance was philosophical, not technical.

B.6 Quality Criteria Application Examples

Credibility

• Triangulation: Multiple industries, experience levels, geographic locations

Transferability

• Thick description: Detailed context for each participant

• Variation sampling: Startups to enterprises, juniors to seniors

• Clear boundaries: Western, English-speaking contexts acknowledged.

Confirmability

• Negative case analysis: Resisters challenged initial framework.

45

• Data availability: Anonymised transcripts available on request.

B.7 Interview Quality Measures

Technical Quality

• Recording quality check before starting

• Quiet environment.

Interview Technique Quality

• Avoided leading questions (flagged three instances in reflection)

• Used probing effectively ("Tell me more about...")

• Allowed silence for reflection.

• Balanced speaking time (average 70% participant, 30% researcher)

Post-Interview Reflection Template

1. Key insights from this interview

2. Questions that worked well/poorly

3. My reactions/biases noticed.

4. Follow-up questions for next interviews

5. Technical issues encountered.

Appendix C: Thematic Analysis Coding Framework

Overview

This coding frame presents the key codes that emerged from the thematic analysis of 14

semi-structured interviews with software developers regarding their experiences with AI

coding tools. The analysis process began with 94 initial codes generated through line-by-line

coding of interview transcripts. Through constant comparison and iterative refinement, these

were consolidated to 56 codes, which were then organised into 12 categories. These

categories revealed three distinct transformation patterns that form the main themes of this

research. The coding frame below presents the most significant codes from each theme to

illustrate the analytical process and support the trustworthiness of the findings.

Research Question

46

How do AI coding tools transform the professional practice of software developers?

Theme 1: Complete Transformers (36%, n=5)

Developers who fundamentally reconstructed their professional practice around AI

orchestration

Category: Identity Transformation

Code Description Example Quote

IDENTITY_TRANSFORMATION

Fundamental shift in

professional self-concept

from coder to AI

educator/orchestrator

"I'm the teacher now. I

spend my days teaching

the AI what I want, guiding

it through iterations. It's

completely changed how I

work; I don't write code

anymore; I educate AI

systems." (P001)

ROLE_METAPHOR_used

Use of educational or

orchestral metaphors to

describe transformed role

"I'm managing AI students.

I'll have one AI working on

the API, another on the

frontend, another writing

tests, while I'm

orchestrating and

integrating." (P002)

CODER_TO_ORCHESTRATOR

Transition from writing

code to managing AI

agents

"I just get things done now.

Don't call me a developer,

I'm a solution creator. The

code is just a byproduct of

solving problems." (P005)

Category: Infrastructure Development

47

Code Description Example Quote

KNOWLEDGE_INFRASTRUCTURE_creation

Building

comprehensive

documentation

systems to

support AI use

"50+ markdown files

containing

organisational

memory, best

practices, error

patterns, success

templates... this

infrastructure is what

makes me 5x more

productive than

before." (P001)

ORGANISATIONAL_MEMORY

Embedding

collective

knowledge into

AI-accessible

formats

"We built internal AI

coding Tools trained

on years of

documentation... It's

like having a senior

developer who knows

everything about our

systems." (P004)

Category: Work Practices

Code Description Example Quote

VIBE_CODING

Iterative,

conversational

programming with AI

until solution "feels

right"

"I iterate with the AI until

the solution feels right. It's

more art than science

now." (P001)

MULTI_AGENT_ORCHESTRATION
Managing multiple AI

instances working on

"It's like running a

development team where

the developers never sleep,

48

Code Description Example Quote

various aspects

simultaneously

never complain, but also

never truly understand."

(P002)

Theme 2: Selective Adopters (50%, n=7)

Developers maintaining strategic boundaries between human and AI work.

Category: Boundary Management

Code Description Example Quote

TASK_DELEGATION_to_AI

Deliberate

decisions about

which tasks to

assign to AI

"Tests are perfect for AI, repetitive,

pattern-based, clear success criteria.

Even if it gets edge cases wrong,

it's faster to fix than write from

scratch." (P006)

TASK_RETENTION_human

Conscious

preservation of

certain tasks for

human control

"Critical path code, authentication,

payment processing, data handling

that's all me. AI handles the

scaffolding around it." (P006)

HUMAN_OVERRIDE_capability

Maintaining ability

to reject or modify

AI outputs

"It's a tool, not a rule. I decide when

and how to use it based on what's

appropriate." (P006)

Category: Validation Practices

Code Description Example Quote

SELECTIVE_VALIDATION

Context-dependent

checking of AI

outputs

"New features get maybe 50%

checking. Anything touching

existing systems gets line-by-line

review." (P008)

49

Code Description Example Quote

DOMAIN_SPECIFIC_validation

Enhanced scrutiny

for regulated or

critical domains

"Banking regulations mean some

things must remain under human

control... Every line of code

touching money has my fingerprints

on it." (P007)

Category: Skill Preservation

Code Description Example Quote

SKILL_ATROPHY_risk

Recognition of

declining

traditional

abilities

"I got to a point where I was

going to write some unit tests

and thought 'I shouldn't need to

ask AI how to do this.' That

was my wake-up call." (P008)

FUNDAMENTAL_SKILL_importance

Deliberate

maintenance of

core

competencies

"Every Friday is no-AI day. I

code everything manually to

keep skills sharp. A master

carpenter uses power tools but

remains a carpenter." (P011)

Theme 3: Conscious Resisters (14%, n=2)

Developers actively preserving traditional expertise.

Category: Resistance Philosophy

50

Code Description Example Quote

CONSCIOUS_REJECTION

Deliberate choice

to minimise AI

coding Tool usage

"If you're using AI to do the work,

you're not learning. You're just

getting output. Someone needs to

preserve real understanding."

(P013)

TRADITIONAL_PREFERENCE

Valuing

conventional

development

methods

"While others become AI operators,

I maintain true developer

knowledge." (P013)

Category: Value Creation

Code Description Example Quote

EXPERTISE_REDEFINITION

Finding new value in

traditional skills as

others abandon them

"I've become the go-to person for

reviewing AI-generated code.

Ironically, resisting AI has made

me more valuable." (P014)

Universal Concern (All Participants)

Category: Professional Reproduction

51

Code Description Example Quote

JUNIOR_ROLE_impact

Concern about entry-

level developer skill

development

"Where will juniors learn

debugging when AI fixes errors

instantly? The struggle is where

learning happens." (P002)

MENTORSHIP_DISRUPTION

Breakdown of

traditional knowledge

transfer

"Juniors ask AI before asking

seniors. We're losing knowledge

transfer mechanisms that built this

profession." (P014)

Table 2: Category to Theme Mapping

Categories Merged Into Theme

Identity Transformation, Infrastructure Development, Work

Practices
Complete Transformers

Boundary Management, Validation Practices, Skill

Preservation
Selective Adopters

Resistance Philosophy, Value Creation Conscious Resisters

Professional Reproduction
Universal Concern

(crosscutting)

Theoretical Integration

The coding process was guided by two theoretical frameworks:

Actor-Network Theory (ANT) Codes Applied:

• ACTOR_ENROLLMENT: How AI coding Tools become active participants in

development networks

• AGENCY_DISTRIBUTION: Task allocation between human and AI actors

52

• NETWORK_FORMATION: New configurations of human-AI relationships.

Affordance Actualisation Theory (AAT) Codes Applied:

• AFFORDANCE_PERCEPTION: How developers recognise AI coding Tool

possibilities

• AFFORDANCE_ACTUALISATION: Differential realisation of AI capabilities

• CONTEXTUAL_CONSTRAINT: Organisational and regulatory limitations

This coding frame demonstrates the systematic progression from raw interview data through

codes and categories to the three transformation patterns that answer the research question.

Appendix D: Additional Participant Quotes and Details

Extended Participant Profiles

Complete Transformers

P001 "The Orchestrator" (Startup Developer, 4 years) Extended quote on infrastructure

development:

"Each markdown file is categorised, we have prompts for different contexts, error patterns

we've encountered, success templates that work. It's like building a second brain for the AI.

When a new developer joins, they inherit this knowledge base instantly."

P002 "The Manager" (Healthcare ML Engineer, 5 years) On domain-specific challenges:

"Healthcare isn't like building a todo app. HIPAA compliance, medical terminology, edge

cases that could literally kill someone, it took three months to train our AI systems to

understand these constraints. But now? It catches compliance issues I might miss."

P003 "The Enthusiast" (Enterprise Developer, 3.5 years) Full reflection on industry

implications:

"What happens when every company needs 80% fewer developers? We're building tools that

make our own jobs redundant. It's exciting and terrifying. I love the productivity, but I worry

about the industry's future."

P004 "The Builder" (Data Analyst, Large E-commerce, 3 years) Detailed infrastructure

description:

53

"We have 10s of thousands of pages of documentation feeding into our LLM. Every API

endpoint, every data schema, every business rule from the past decade. It's like having a

senior developer who's been here since day one and remembers everything."

P005 "The Transcendent" (Freelance Developer, 8 years) On outcome-focused

development:

"Clients don't care if I wrote the code or AI did. They care about results. I deliver in days

what used to take weeks. The code quality? Better than what I'd write manually because AI

doesn't get tired or make typos."

Selective Adopters

P007 "The Boundary Setter" (Backend Developer, Payment Processor, 4.5 years) On

code review challenges:

"Every PR review now I'm wondering, did they write this or did AI? There's a certain 'smell'

to AI code. Perfect but soulless. I've started requiring comments explaining the human

thinking behind implementations."

P008 "The Balanced" (Backend Developer, Major Airline, 3 years) Full transformation

journey:

"First month with AI: amazing, 10x productivity. Second month: wait, I'm forgetting basic

syntax. Third month: full crisis, couldn't debug without AI. Now I've found balance, AI for

exploration, human for implementation of critical parts. Legacy code requires understanding

decades of decisions. AI can't grasp that context."

P009 "The Observer" (Backend Engineer, Fintech, 5 years) On community

fragmentation:

"We're losing our shared foundation. Used to be, any developer could read any other

developer's code. Now? Complete Transformers write through AI abstractions. Resisters

write traditionally. We're becoming different species."

P010 "The Missing Middle showed a blend of opinion and shows that adoption is spectrum.

P012 "The Strategist" (Product Owner, Telecom, 10+ years) On product management

applications:

54

"I use AI for structure creation, user stories, acceptance criteria templates, test scenarios. But

interpreting what stakeholders need versus what they say they want? That's human work. AI

can't read between the lines of a rambling requirements meeting."

Conscious Resisters

P013 "The Purist" (Software Engineer, Industrial Software, 6 years) Extended

philosophy:

"Every line of AI-generated code is technical debt. You don't understand it, you can't maintain

it, you can't optimise it. Sure, it works today. What about in five years when the original AI

model is deprecated and no one remembers why it generated that specific pattern?"

P014 "The Sceptic" (Data Scientist, Large Consulting, 10 years) On forced compliance:

"IBM mandates Watson usage. I write my solution first, then feed it to Watson for

'suggestions' I mostly ignore. It's corporate theatre. The AI is predicting text patterns, not

understanding data science. My resistance has made me the go-to person for catching AI

mistakes others miss."

Detailed Infrastructure Descriptions

Complete Transformer Infrastructure Systems

1. Prompt Engineering Frameworks

o Hierarchical organisation (context → domain → task → variation)

o Version control for prompt evolution

o Success/failure pattern documentation

o Performance metrics tracking

2. Domain-Specific Training Protocols

o Industry regulation compliance matrices

o Technical terminology glossaries

o Edge case documentation

o Error pattern libraries

3. Organisational Knowledge Integration

55

o API documentation ingestion

o Historical codebase analysis

o Business rule encoding

o Team convention capture

Selective Adopter Boundary Systems

1. Decision Matrices

o Task criticality assessment

o Security sensitivity scoring

o Regulatory requirement mapping

o Performance impact evaluation

2. Validation Protocols

o Context-specific review percentages

o Critical path identification

o Legacy system interaction rules

o Compliance checkpoints

Conscious Resister Preservation Systems

1. Knowledge Documentation

o Algorithmic reasoning capture

o Design decision rationale.

o Debugging methodology

o Performance optimisation techniques

2. Review Frameworks

o AI pattern detection methods

o Code quality metrics.

56

o Security vulnerability identification

o Architectural coherence assessment

Task Delegation Details

Complete Statistical Breakdown

Universal Delegation Tasks:

• Test writing: 12/14 (85.7%)

• Documentation: 11/14 (78.6%)

• Boilerplate code: 10/14 (71.4%)

• Data validation: 9/14 (64.3%)

• API integration: 8/14 (57.1%)

Universal Retention Tasks:

• Architecture design: 14/14 retained (100%)

• Security implementation: 13/14 retained (92.9%)

• Core business logic: 13/14 retained (92.9%)

• Performance optimisation: 12/14 retained (85.7%)

• User experience decisions: 12/14 retained (85.7%)

Extended Quotes on Junior Developer Crisis

P001: "We're creating a generation of developers who can build but not debug, create but not

understand. It's like teaching someone to drive using only self-driving cars."

P004: "Our junior hire can build features faster than I could at 5 years’ experience. But ask

them to explain how it works? Blank stares. They're productive but not knowledgeable."

P007: "Traditional learning meant struggling with problems, finding solutions, understanding

why things work. Now juniors get instant answers. Where's the learning in that?"

P009: "The apprenticeship model is broken. Seniors don't review junior code because AI

already has. Juniors don't ask seniors questions because AI answers faster."

57

P011: "Every bug you struggle with teaches you something. Every algorithm you implement

builds intuition. AI removes the struggle, and with it, the learning."

P013: "We're heading for a cliff. In 5-10 years, when today's juniors should be seniors, they

won't have the deep knowledge needed for system architecture, performance optimisation, or

debugging complex issues."

Interview Context and Reflexive Notes

Recruitment Challenges

• Initial difficulty finding Conscious Resisters

• Geographic bias toward English-speaking countries

• Company size skewed toward large enterprises.

Interview Dynamics

• Complete Transformers: Enthusiastic, often exceeded time.

• Selective Adopters: Measured, precise responses.

• Conscious Resisters: Initially defensive, then philosophical

Researcher Observations

• Surprise at depth of identity transformation

• Unexpected universality of junior developer concerns

• Infrastructure investment levels exceeded expectations.

• Cluster boundaries more permeable than anticipated.

58

Appendix E: Semi-Structured Interview Questions

59

Appendix F: AI Acknowledgement

I state that the use of Generative AI during this study was well within the line set with the

MG4D7 MISDI Dissertation “Limited Authorised Use” policy. Claude was primarily used to

assist me in maintaining deadlines and coherency between chapters and helped me with

storing and then reflecting on my ideas for the research, I did also use tools were in the early

stages of the research process for brainstorming, helping me structuring ideas, and helping

me understand academic theories, Zero Generative AI was used for the data analysis and I did

not upload data to these platforms. All feedback and suggestions provided by the tools were

critically reviewed by myself.

