London School of Economics and Political Science

Department of Management

Rewriting the Developer: Professional Identity

Reconstruction in the Age of AI Coding Tools.

Dissertation
MG4D7
Wordcount: 8791

Submitted by Candidate 42439

Supervisor: Associate Professor Maha Shaikh

tHE LONDON SCHOOL
oF ECONOMICS anp
POLITICAL SCIENCE ®

Abstract

As artificial intelligence coding tools proliferate across the profession, a fundamental
question emerges: are developers simply adopting new tools, or is the very nature of
programming being reconstructed? This dissertation investigates how Al coding tools
transform not just developer productivity, but professional practice, identity, and knowledge
production itself.

Through semi-structured interviews with fourteen software professionals across startups,
enterprises, and consultancies, this qualitative study employs a novel dual-lens theoretical
framework combining Actor-Network Theory and Affordance-Actualisation Theory. This
reveals how identical Al coding tools produce different professional transformations based on
how the developers integrate these tools into their roles, and their level of comfortability in
delegating tasks to these tools. Thematic analysis uncovered three distinct transformation
patterns, challenging linear adoption narratives.

Complete Transformers (36%) fundamentally reconstruct their professional identity from
"code writers" to "Al orchestrators," using their own Al coding tools, proprietary
organisational systems that amplify Al capabilities through recursive knowledge
accumulation. Selective Adopters (50%) maintain strategic boundaries between human and
Al work, articulating sophisticated decision frameworks: "it's a tool, not a rule." Conscious
Resisters (14%) actively preserve traditional expertise and reject delegating any roles to Al
coding tools willingly.

Two critical phenomena emerged across the three role transformation types discovered
through the research. First, "vibe coding", where developers iterate conversationally with Al
until solutions "feel right", represents an epistemic shift from deterministic to intuitive
programming practices. Second, all interviewed participants expressed profound concern
about junior developer skill development, as Al automation of entry-level tasks collapses
traditional learning pathways, potentially affecting how the profession reproduce essential
expertise.

The Network-Affordance Integration Model developed through this research explains
differential transformation outcomes, revealing professional practice transformation as
ecosystem diversification rather than convergence. These findings have immediate
implications for organisational strategy, educational design, and individual career planning.
As knowledge professions broadly confront Al integration, understanding software
development's early transformation provides crucial insights for navigating the fundamental
reconstruction of professional work in the Al era.

1

Table of Contents

AADSITACE ...ttt b et sttt et b et e a e h e et ea e a e e bt et e bt e bt et e neenbeenee i
LSt Of ADDIEVIALIONS.eiuiieiiiiiieiie ettt ettt ettt ettt e bt e e b e s eeeenbeens v
LSt OF FAGUIES ...ttt ettt ettt ettt e te e aa e e b e esseeenbeesseeesseensneenseensaaans v
LSt OF TADIES ...ttt ettt b et sttt st be et st vi
Chapter 1: INrOAUCTIONviiiiiieciie ettt e e e ae e s eae e sseeeesreeesaseeesssaeessseeennnes 1
Chapter 2: Literature REVIEWccuieiuiiiiiiiieeiieiieeie ettt ettt et ee s e saesseesaeeenseenens 4
Chapter 3: MethOdOLOZYcoooviiiiiieciie ettt e e e e e e e e e s baeessaeeesnseeenns 10
Chapter 4: FINAINGS.......oooiiiiiiiieeiiece ettt ettt ettt s teesaae e b e eseesnseessseenseessseenseas 15
Chapter 5: DISCUSSION ...eiiuiiiiciiieeeiieecieeeitee et e e siteeestaeeestaeesseeeessseessseeesssaeessseeessseeessseeessseeanns 25
Chapter 6: CONCIUSION.ciiiiiiiiiiieeie et e ete ettt et e et e ebeesseesebeesaaeesseesaeseseessseesseesssesnsens 32
RETEIENICES ...ttt ettt et e es 36
F N 0815 116 D R SRS RRRUPPRRURR 40
Appendix A: Participant Consent FOIM...........ccooviiiiiieiiieiiieniieiieeeeeesee et 40
Appendix B: Detailed Methodology Documentationcc.cceeceevieeieeniinieenieeieesieeenn 41
Appendix C: Thematic Analysis Coding Framework...........ccccocvveriievieniiiiieniieieeeeee, 45
Appendix D: Additional Participant Quotes and Detailscccveeeiieeciieeciieeieeeeeeee, 52
Appendix E: Semi-Structured Interview QUEStIONS........cccveerieeeriueeerieeeieeeieeeeieeeevee e 58
Appendix F: AT Acknowledgementcocooiiiiiiiniininiiiiiieeceeseese e 59

111

List of Abbreviations
AAT - Affordance-Actualisation Theory
Al - Artificial Intelligence
ANT - Actor-Network Theory
API - Application Programming Interface
GDPR - General Data Protection Regulation
HIPAA - Health Insurance Portability and Accountability Act
HTML - HyperText Markup Language
ID - Identifier
IDE - Integrated Development Environment
IS - Information Systems
IT - Information Technology
LSE - London School of Economics and Political Science
METR - Model Evaluation and Threat Research
ML - Machine Learning
NBER - National Bureau of Economic Research
OECD - Organisation for Economic Co-operation and Development
PMC - PubMed Central
SEC - Securities and Exchange Commission
TAM - Technology Acceptance Model
UI - User Interface

UTAUT - Unified Theory of Acceptance and Use of Technology

v

List of Figures

Figure 1: Coding Quotes into Themes.cc.cocveriiiiriiniiiieiieieeieeeee e 13
Figure 2: Thematic Analysis Coding TIEEcccveriieriiiriieiieiie ettt 13
Figure 3: Delegation patterns across CIUSIETS........cuuieriuiieeciieeiiieeciee et ree e e e eaee e 20
Figure 4: Synthesis of these workflow transformations.ccceceeienieienieneeienieneeenens 22
Figure 5: Relationship between network position and affordance perception......................... 28

List of Tables

Table 1: Participant Demographics Summary:
Table 2: Research Contributions Summary ...

vi

Chapter 1: Introduction

Among the software developers interviewed for this study, diverse approaches to Al tool
integration are emerging. With 76% of developers using or planning to use Al coding tools
daily (Stack Overflow, 2024), senior developers are redefining their role from manually
coding towards orchestrating Al driven ecosystems. Already, there have been projections that
there will be a majority shift of "manual coders to orchestrators" by 2030 (Ammar et al.,

2024).

Junior developers using Al coding tools can produce complex code at an unprecedented level
but would struggle to explain how it works or build on it further (Osmani, 2025).
Organisations diverge in their approaches, allowing Al coding tool adoption while other
organisations maintain their traditional development practices (GitHub, 2024; Google Cloud,
2025). This ongoing role transformation demands investigation beyond productivity metrics

to understand how these tools reconstruct this professional practice for software developers.
1.1 The Research Gap

Despite Al coding tools' rapid adoption there is a lack theoretical understanding of its
transformative impact. Current literature has three critical limitations that this research paper

addresses.

Firstly, the field's quantitative bias toward using productivity metrics neglects the changes to
the human technological interaction of this transformation. Traditional IS adoption models for
technology like TAM (Davis, 1989) and UTAUT (Venkatesh et al., 2003) assumes stable
technology boundaries that recede over time as developers reconsider their roles changing
from code writers to Al orchestrators. These critical reviews argue these models have "a
narrow perspective, which focuses only on individual adopters' beliefs, perceptions and usage
intention" failing to capture the fundamental task and responsibility transformations

occurring with Al coding tool implementation (Holden and Karsh, 2019).

The second limitation is that assuming uniform adoption overlooks the different patterns in
how people are using Al tools. Current frameworks struggle to capture the nuanced and
varied strategies developers employ when integrating Al coding tools, and the separation

between Al appropriate and human essential tasks. This selective integration of tools

challenges the technological determinism pervading Al discourse, yet empirical investigation

of these boundary-setting practices remains commonly absent from literature.

Industry analyses confirm that entry-level roles face existential challenges, with 77% of
leaders expecting Al to enable junior workers to take on greater responsibilities while
simultaneously reducing hiring needs (Microsoft, 2024). Industry analysis warns that Al
coding assistants may lead to fewer junior developer positions as teams reshape around senior
roles overseeing Al-generated code (Gross, 2025). Yet we lack understanding of the systemic

implications for professional development and skill transfer.
1.2 Research Question and Objectives
Therefore, this dissertation asks: How do Al coding tools transform the professional

practice of software developers?

This question explores not only whether developers adopt Al coding tools, but how these
tools reshape what developers do, how they work, and how they perceive themselves. The
transformation extends beyond productivity to encompass the full spectrum of professional

practice of developers.
This central question is addressed through three integrated objectives:

Objective 1: Examine how Al coding tools change task allocation and workflow patterns in

software development, investigating role redistribution between human and artificial actors.

Objective 2: Identify emerging core competencies and traditional skill transformations as
developers integrate Al coding tools, exploring how different actualisation strategies lead to

new skill portfolios.

Objective 3: Understand how developers reconceptualise their professional identity and

future career trajectories.

1.3 Intended Contributions

This research aims to advance IS theory by synthesising ANT and AAT to explain the
different transformation outcomes in Al coding tool adoption. Through qualitative

investigation of software developers' experiences, this study seeks to:
1. Challenge the linear adoption models by showing multiple transformation pathways

2. Identify organisational strategies that determine Al coding tool effectiveness

3. Document user resistance as a legitimate response to address success bias
4. Examine the implications for junior developers’ skill development and future employment.

With this research the dissertation contributes to understanding software development's
transformation as a potential template for other professions experiencing Al integration. The
following chapter examines existing literature across information systems, software

engineering, and organisational research.

Chapter 2: Literature Review

The integration of Al coding tools in software development represents a socio-technical
transformation. The academic landscape on this topic is young and remains fragmented and
superficial. This review synthesises literature from information systems, software
engineering, and organisational research to explore how Al tools reconfigure programming
work, professional identity, and organisational capabilities. We exclude purely technical
evaluations of Al performance, ethical debates about Al consciousness, and speculative future

scenarios to maintain focus on empirically grounded professional transformation.
2.1 Traditional Information Systems Perspectives on Analysing Technology Use

Some traditional IS adoption frameworks are not equipped to understand Al coding tools. The
Technology Acceptance Model (Davis, 1989) and its evolution into UTAUT (Venkatesh et al.,
2003) assumes technology like coding tool would have clear boundaries between user and
tool. Recent attempts to extend TAM with Al-specific constructs (Dahri et al., 2024) still
treats Al as an enhanced tool rather than a transformative force that reconstructs the role and

tasks for the user. Al coding supersedes the boundaries set in these papers.

Orlikowski (2007) sociometrical perspective is better suited for this type of analysis. Her
argument that "the social and the material are constitutively entangled in everyday life" (p.
1437) directly applies to developers whose work practices become intertwined with Al
functionality. When looking at GitHub Copilot integration, it transcends tool use, it represents
a change in the entire production process for code. With Al coding tools, this entanglement is
literal: human intention and Al capability merge in the act of producing code. The developer

thinks, Al generates, developer evaluates.

Leonardi (2011) concept of materiality states that technology has features exist across
different use contexts, but how people use it still depends on the context of the user. For Al
coding tools, this means that Al always has the same capabilities such as generating code
from prompts. But what happens depends on the organisation (startup vs. bank), the person's
skills, and the rules they must follow. This explains how the same Al coding tool produces

amazing results for one developer and frustration for another.
2.2 Actor-Network Theory: AI Coding Tools as An Active Participant in Development

Actor-Network Theory (ANT), developed by Bruno Latour, Michel Callon, and John Law in

the 1980s, provides an approach to understanding how socio-technical systems treat human

4

and non-human entities as equally of action within networks. This theory has been further

expanded in Latour (2005), which continues to treat human and non-human actors equally.

ANT treats non-humans as actors shaping outcomes (Latour, 2005). This matters because
developers already see Al as a partner. Bird et al. (2022) found developers describing the
relationship with Al as symbiotic, with Al having an active role in development. When
GitHub Copilot suggests code that solves a problem the developer hadn't fully articulated, it's
not just responding to commands. It's participating in problem-solving. It is not a passive tool

but engaging the user directly and sometimes leading the creation of code.

Callon (1986) translation process shows how Al becomes embedded in development
networks. Problematisation stage occurs when organisations flag their competitive
disadvantage without using Al tools. Intersegment, by which actors attempt to impose and
stabilise the identity of other actors by creating mechanisms that lock actors into set roles
within the network. For Al adoption this happens with pilot programs, trainings and incentive
structures that position Al tools as indispensable. Enrolment sees developers onboarding new

Al-mediated practices. Mobilisation is the achievement of stable Al-integrated workflows.

Law (2009) "network multiplicity" also can be used to describe why developers use Al for
some tasks and not others. This can be analysed by ANT by considering each task as a
parallel network. Al-augmented for new projects, traditional processes for legacy systems,
creating what he terms "partially connected" networks that challenge binary enrolled/not-

enrolled categorisations.

Law's approach allows actors to simultaneously participate in multiple, overlapping networks
with different rules and relationships. This is more accurate to how developers navigate
between Al-assisted and traditional development practices rather than simply adopting or
rejecting Al tools wholesale. In modern research on Al integration into work tasks (Barke et
al., 2023), developers have been seen shifting between stages of integration, using Al coding

tools in specific tasks while resisting in others.
2.3 Affordance-Actualisation Theory: Why Tools have Different User Outcomes

ANT explains network reconfiguration; AAT can be used to explain why the same Al coding
tools produce different outcomes for different users. Strong et al. (2014) organisational

affordance actualisation framework identifies three components to analyse tool use with

affordance existence (what technology allows), affordance perception (what users recognise)

and affordance actualisation (what happens in practice).

This framework, building on Gibson (1979) ecological psychology and Markus and Silver
(2008) IS adaptation, explains the varying levels of transformation among users. This
framework can move beyond deterministic views of technology adoption to explain how
organisational and individual factors shape the context which dictates how technology is
used. This is crucial for understanding why some developers adopt Al tools while others
resist despite using identical technology. Star and Griesemer (1989) "boundary objects"
concept helps here, Al tools mean different things to different communities or users while

maintaining enough coherence to enable collaboration and mutual comprehension.

Volkoff and Strong (2013) can help explain the effect of organisational context on how an Al
coding tool is used. A senior developer in a startup accepts Al's "rapid prototyping" use and
implements it. A junior developer in banking may know about use for the AI Coding tool to
prototype, but organisational policies prevent the junior for using the tools in specific way.
This means transformation is not dictated solely on technology capability, but the complex

interplay of perception, intention, and context.

For example, Strong et al. (2003) research on electronic health record implementation found
that the hospitals had access to the same data visualisation tools, yet only the hospitals with

analytical culture and dedicated resources used these tools into improved patient outcomes.

While the term "collaborative affordances" requires further theoretical development, recent
research on human-Al interaction patterns (Gomez et al., 2024) reveals how human-Al
partnerships allow for the creation of new processes that were not possible before
implementation. Yet this work exhibits success bias documenting mostly successful
integration of Al coding tools while ignoring failed attempts, abandoned adoptions and

refused affordances.
2.4 Al Coding Tool Productivity Increases and Task Augmentation

Peng et al. (2023) GitHub study is a corner stone paper for the productivity narrative that
dominates discourse. Their controlled experiment found 55.8% faster task completion with
Copilot, and this become the most-cited metric in academic and industry discussions. But this

metric obscures a deeper change code produced.

However, methodological scrutiny reveals significant limitations on their findings. Tasks
were artificially constrained with clear specifications while success was measured on
completion time only. In addition, code quality metrics were absent. This approach provided
valuable baseline data but failed to capture the complexity of real-world development where
requirements are ambiguous, quality depends on more than speed, and long-term

maintainability is essential.

Ziegler et al. (2022) found context matters in Al coding tools increasing productivity, finding
gains in only new projects, and seeing productivity losses in legacy code bases and older
projects. More concerning: Osmani (2024) documents the "70% problem". Developers accept
70% of Al suggestions but cannot evaluate their quality. Brynjolfsson et al. (2023) found

similar patterns in other fields, impressive metrics hiding capability erosion.
2.5 Concern on Al Code Security and Declining Developer Skills

The phenomenon of "competence without comprehension" is empirically underexplored. The
absence of any longitudinal studies tracking skill evolution represents a critical gap in
literature. The universal concern about junior developer mentorship which was documented
across industry discussions (Engineering Enablement, 2025) reveals communities recognising

threats to existence.

Industry voices confirm fears. Osmani (2025a) warns of "skill atrophy," while Goel (2025)
documents juniors who "can't actually code" without Al. The profession risks what Polanyi
(1966) called losing "tacit knowledge" the unexplainable expertise that defines mastery.
Developers are losing what Schon (1983) would call "reflection-in-action." They produce

without understanding, breaking the feedback loop essential to expertise.

Security concerns are also an underexplored risk. Perry et al. (2023) analysis of Copilot-
generated code found that 40% of code contained security vulnerabilities, significantly higher
than human code. Even then developers expressed increased confidence in that code despite
producing less secure code. METR (2025) randomised controlled trial found that senior
developers were 19% slower using Al tools despite thinking they were 20% more productive.
Traditional metrics like quality of code or quantity of task completion become meaningless

when developers shift from writing to orchestrating, from creating to curating.

2.6 Identity and Role Perception

In Wenger (1998) communities of practice framework, though sparingly applied to Al
transformation, offers unique insights. Professional communities maintain identity through
shared practices, languages, and values. Al tools fracture these communities. When
developers "pair program" with Al while others maintain traditional practices, this shared

identity erodes.

This pattern echoes earlier technological transformations. Braverman (1974) and Noble
(1984) documented how numerical control systems in manufacturing did not just make
production faster, they fundamentally altered what it meant to be a machinist. Skilled
craftsmen who understood materials and processes became machine operators who followed
programmed instructions. The parallel is striking, today's developers risk transitioning from
code craftsmen who understand logic and architecture to Al operators who orchestrate
outputs they cannot fully explain. Acemoglu and Autor (2011) formalised this with their
findings, seeing how technology replaced previously routine tasks and created new required

skill for developers.
2.7 Al Coding Tool Infrastructure

Hanseth and Lundberg (2001) argue that the infrastructure around specific tasks does not just
help complete the tasks, but it fundamentally shapes what the task requires from the users.
This insight proves crucial for Al coding tools. Organisations are not just adopting Al; they

are building entire task infrastructures around it.

Google Cloud (2025) documents how leading organisations create comprehensive Al
systems: prompt libraries that capture coding patterns, workflow templates that standardise
Al interaction, and knowledge bases formatted for AI consumption. These are not just
efficiency tools. Following Latour (1987), they function as "inscription devices “mechanisms

that capture human knowledge and stabilise it in forms Al can reliably use.

The Al tool infrastructure emerging in recent studies exemplifies theoretical integration.
Through ANT, infrastructure represents "inscription devices" (Latour, 1987) that stabilise
new actor-networks and task completion processes. Organisations building proprietary
prompt libraries, custom Al training, and specialised workflows gain exponentially more

value than those using generic tools.

2.8 Conclusion

The integration of Actor-Network Theory with Affordance-Actualisation Theory provides a
framework for understanding Al tools as active participants in development networks, whose
impacts vary based on contextual factors. This perspective reveals that developers engage
with Al through distinct patterns from comprehensive integration to selective use to minimal
adoption rather than following universal trajectories. By combining ANT's recognition of Al
agency with AAT's explanation of differential outcomes, we can investigate how developers
are not just adopting tools but how they are co-evolving with Al in ways that create divergent
professional futures. This framework will be used to guide our empirical investigation into
how Al coding tools transform professional practice. This theoretical integration of Actor-
Network Theory and Affordance-Actualisation Theory provides the conceptual foundation for

investigating how developers navigate Al tool transformation.

Chapter 3: Methodology
3.1 Research Design and Philosophy

This study employed semi-structured interviews with 14 software developers to explore how
Al coding tools transform professional practice. An interpretive approach was used in this
research to understand how Al coding tools transform software developers' professional

practice.

The research utilises Actor-Network Theory (Latour, 2005) and Affordance-Actualisation
Theory (Strong et al., 2014), recognising technology adoption as socially constructed rather
than technologically determined. ANT reveals how Al coding Tools become active network
participants, while AAT explains why identical tools produce different outcomes. This dual-
lens approach proved essential for understanding both transformation mechanics and

variation.
3.2 Systematic Literature Search Strategy

This review employed Webster and Watson (2002) systematic search strategy to ensure broad
coverage. My initial searches across ACM Digital Library, IEEE Xplore, AIS Electronic
Library, Web of Science, ArXiv and Google Scholar using paired combinations like ("Al
coding tools" or "GitHub Copilot" and "Al pair programming") and ("transformation" with

"adoption" or "skills" or "identity") paired with ("developer" or "developer").

There was a focus on papers published between 2022-2025. Al coding tools only became
fully relevant in the context of our research which mandated the cut off. Given the speed of
progress in these tools, preprint studies that are highly cited and renowned are used as they

are relevant to the specific circumstances I am researching.

Paper Inclusion Criteria:
e Published 2020-2025 (coinciding with Al coding tool emergence)
e Empirical evidence (not purely speculative)
e Focus on transformation/practice change (not just productivity)

e Peer-reviewed or highly cited preprints

10

3.3 Ethical Considerations

This research received LSE Research Ethics Approval (Reference number: 550382) in June
2025. Participants received detailed information sheets and provided written consent for
recording and transcription (See Appendix A for Consent forms). Pseudonyms (P001-P014)
replaced identities within 24 hours, with their organisation removed before analysis as well.
All participants received detailed information sheets explaining the research purpose, data
usage, and their rights and additional verbal approval to record and create a transcript was
obtained at the beginning of each interview. All participant data will be deleted six months

post-dissertation submission.
3.4 Participant Selection and Recruitment

Purposive sampling targeted maximum variation in Al coding Tool adoption approaches. I
began by identifying potential participants through my professional network and LinkedIn,
specifically seeking developers with diverse experiences with Al coding tools. My selection
criteria evolved through initial conversations: I prioritised variation in company size,
geographic location, years of experience, and, crucially, attitudes toward Al adoption, from
enthusiastic early adopters to principled resisters. Inclusion criteria required minimum 3 years
of development experience, or 2 years and a master’s degree. The sample spanned six
countries, company sizes from 15 to 10,000+ employees. There is likely to be bias towards Al
tools as these participants are more likely to engage with research on Al coding tool use, but

an effort was made to also include those open resistors.

10 Descriptor Role Years Experience Organization Type Organization Size Primary Al Tools Interview Length Location Cluster

P00l "The Orchestrator* Startup Developer 4 Tech Startup Small (<50) ChatGPT, Claude, GitHub Copilot 23 min Gemmany Complete Transformer
P002 "The Manager" AUML Engineer b Healthcare Technology Medium (50-250) ChatGPT, Claude Code 32 mun Norway Complete Transformer
P003 “The Enthusiast" Enterprise Developer 35 Enterprise Software Company Large (1000+) Internal AL Copilot, ChatGPT 35 min Ireland Complete Transformer
P04 “The Builder" Data Analyst / Brand Specialist 3 Large E-commerce Company Large (1000+) Intemal Al Tools, ChatGPT 34 min Ireland Complete Transformer
P005 "The Transcendent" Full Stack Developer 8 Multiple Freelance Vanous ChatGPT, Multiple Tools 38 min Israel Complete Trans!

P006 "The Guardian™ Full Stack Engimneer 6 Banking Financial Services Large (1000+) GitHub Copilot (restricted) 25 min Ireland Selective Adopter

P007 "The Boundary Setter” Backend Developer 45 Financial Services (Payments) Large (1000+) GitHub Copilot, ChatGPT 29 mun UK Selective Adopter
POOS "The Balanced” Backend Developer 3 Aviation (Major Airline) Large (1000+) GitHub Copilot, ChatGPT 19 min Treland Selective Adopter

P009 "The Observer" Backend Engmeer 5 Fintech Medum (50-250) ChatGPT, GitHub Copalot 31 min Ireland Selective Adopter
PO10 "The Philosopher” ML Engineer 6 Startup Freelance Small (<50) ChatGPT, Claude 38 min Treland Selective Adopter

P01l “The Craftsperson” Junior i0S Developer 4 Aviation (Major Airline) Large (1000+) ChatGPT (limited use) 24 min Ireland Selective Adopter

P012 "The Strategist” Product Owner 10+ Telecommunications Large (1000+) ChatGPT, Vanous 28 min Ireland Selective Adopter

POI3 "The Punst” Software Engineer 6 Industnal Software Medium (50-250) None (conscious choice) 42 min UK us Resister

P014 "The Skeptic" Data Scientist/Consultant 10 Large Consulting Firm Large (1000+) Watson (forced), mummal use 36 mn USA Conscious Resister

Table 1: Participant Demographics Summary.

11

3.5 Data Collection

Semi-structured interviews (19-42 minutes, average 30.6) were conducted July-August 2025
via Microsoft Teams. The questions were designed to elicit narrative responses rather than
simple yes/no answers, encouraging participants to share specific examples and reflect on
their changing practices. Interview was designed to take 20-25 minutes per participant; I did
have great interviews with some participants who were happy to discuss topics at great depth

which is why some interviews stretch to 40+ minutes.

The protocol evolved through three iterations:
e Version 1 (P001-P003): General Al usage exploration
e Version 2 (P004-P009): Added infrastructure questions after POO1's emphasis.
e Version 3 (P010-P014): Incorporated identity and junior developer concerns

Questions covered the participants professional background, introduction to Al, use and
changes to their role’s tasks, new skills required for Al and future perspectives on
development. My interview technique evolved from general exploration to targeted probing.
Early interviews accepted productivity claims uncritically; in later interviews I explored costs
and trade-offs. This evolution, while potentially introducing inconsistency, enabled richer
understanding of transformation complexity. A copy of the interview guide can be found in

the Appendix E.
3.6 Data Analysis Analytical Approach

I employed thematic analysis (Braun and Clarke, 2006) to identify, analyse, and track patterns
within the interviews. This approach allowed me to move beyond surface descriptions to
interpret the deeper meanings participants attached to their Al adoption experiences. Through
iterative coding and theming processes, I developed a nuanced understanding of how
developers navigate the transformation of their professional practice. There was only one

researcher coding these interviews which does increase the risk of bias.
3.7 Analysis Software and Coding Process

Data management utilised NVivo 14 for systematic coding and retrieval. Interviews were
transcribed using Otter.ai with manual verification for technical terminology. Analysis

followed Braun and Clarke (2006) six-phase thematic analysis enhanced by theoretical

12

sensitivity from ANT and AAT frameworks. Initial coding produced 94 codes, refined

through constant comparison to 56 consolidated codes organised into 12 categories.

RAW QUOTE

"I don't write code anymore... | INITIAL CODE
manage Al agents to write
code for me. It's like being a
teacher with very smart
students.”

— Role shift from coder to Al —
manager

CATEGORY THEME

— Complete Transformation

Identity Transformation Cluster

Figure 1: Coding Quotes into Themes: This shows of the coding process used in the thematic
analysis. Raw interview quotes were systematically coded, collecting participant statements
to initial descriptive codes, then grouped into conceptual categories, and finally organised
into thematic clusters that show distinct patterns of Al adoption.

AI Integration Patterns

Complete Transformers Selective Adopters Conscious Resisters
| | I

| | I I | |
Identity Infrastructure Boundary Hybrid Philosophy Value
Shift Development Setting Skills of Code Creation

| | I I | |
Teaching Scaffold Context Balance Knowledge Review
Metaphor Systems Judgment Strategies Preservation Expert

Figure 2: Thematic Analysis Coding Tree - How clustering functioned to create the three
clusters.

3.8 Researcher Reflexivity

As someone who uses Al coding tools, I brought both insight and bias. Before the study |

would have assumed:
e A high level of adoption of Al coding tools

e Most companies implement basic tools top down onto employees.

13

e Adoption patterns based on age.

e Universal productivity increases

o Skill loss and gradual separation of developers from the code
e Threats to junior roles and learning code via Al

My personal relationship with Al coding tools evolved throughout this research. As an active
GitHub Copilot user, I initially viewed Al coding tools through an optimisation lens, focusing

on productivity gains.

However, three critical moments shifted my perspective: PO03's observation about
"automating away customers" challenged my productivity-focused assumptions; PO08's
journey from over-dependence to selective adoption revealed non-linear transformation paths;
and P013's principled resistance reframed rejection as potentially strategic rather than
regressive. This evolution influenced later interviews, where I probed more deeply into costs

and trade-offs rather than accepting benefit claims uncritically.
3.9 Alternative Interpretations

The three clusters could reflect personality types, organisational cultures, or career stages
rather than Al-specific transformation. The small sample prevents definitive causal claims.
Economic pressures and job security concerns may influence participants' narratives about Al

adoption.

14

Chapter 4: Findings

This chapter presents findings from thematic analysis of 14 semi-structured interviews with
software professionals. Through the coding of 428 minutes of interview data three distinct
clusters emerged, each representing fundamentally different approaches to integrating Al into

professional practice.
4.1 Three Transformation Clusters

Analysis of these fourteen interviews revealed three patterns to Al coding Tool use among the
participants. These clusters, Complete Transformers (n=5, 36%), Selective Adopters (n=7,
50%), and Conscious Resisters (n=2, 14%), represent the different level of tool integration
into their jobs. The distribution of the participants indicates the adoption of Al Coding tools is
not a universal experience and has many factors that influence it. The clusters are grouped
based on their overall level of Al coding Tool adoption, but transformation is a spectrum with
each participants transformation being unique. These clusters work as more of a general
classification of developer rather than a firm white and black interpretation. These three

patterns emerged from this sample and may not represent all developer experiences.
4.1.1 Complete Transformers: Developers Who Fully Embraced AI Coding Tools.

Five participants described a complete change in their development practices. This cluster
included developers across startups to massive enterprises. Their experience ranged from 3-8

years, suggesting transformation isn't solely linked to career stage or experience.
Identity Transformation and Current Role Perception of Complete Transformers
Participants in this cluster expressed fundamental shifts in professional identity:

"I'm the teacher now. I spend my days teaching the Al what I want, guiding it through
iterations. It's completely changed how I work; I don't write code anymore; I educate Al

systems. I'm more professor than programmer now." (P001, Startup Developer)

"I'm managing Al students. I'll have one Al working on the API, another on the frontend,
another writing tests, while I'm orchestrating and integrating. It's like running a development
team where the developers never sleep, never complain, but also never truly understand."

(P002, Healthcare ML Engineer)

15

P005 expressed the most radical identity shift: "I just get things done now. Don't call me a
developer, I'm a solution creator. The code is just a byproduct of solving problems. My

clients don't care if I wrote it or Al did, they care that it works."
Personal Al coding Tool infrastructure

Al tool infrastructure or infrastructure scaffolding is the creation of collection interconnected
tools and processes that developers create to integrate multiple Al coding tools. Rather than
using a single Al coding Tool in isolation, developers build comprehensive systems: GitHub
Copilot for code generation, ChatGPT for architecture discussions, Claude for
documentation, and specialised models for testing - all coordinated through custom
workflows. This infrastructure includes version-controlled prompt templates, automated
validation pipelines that check Al-generated code, knowledge bases that preserve successful

patterns, and feedback loops that continuously improve their Al coding tools performance.

All Complete Transformers described building Al infrastructure to support their transformed
practices. PO01 detailed "50+ markdown files containing organisational memory, best
practices, error patterns, success templates," emphasising that "this infrastructure is what
makes me 5x more productive than before." These files were organised hierarchically:
company policies at the top, project-specific patterns in the middle, and daily prompts at the

bottom.

P002 reported requiring "three months of healthcare-specific implementation" to address
domain requirements before achieving productivity gains. This investment included creating
specialised prompts for HIPAA compliance, medical terminology databases, and edge-case

documentation specific to patient data handling.

P004's organisation "built internal Al coding tools trained on years of documentation,"
creating what they described as "having a senior developer who knows everything about our
systems, every API endpoint, every database schema, every business rule from the past

decade."
Despite embracing transformation, participants expressed systemic concerns:

"We're seeing 5x productivity gains, easily. But here is the thing, our product helps businesses
reduce headcount. We are automating away our own customers. What happens when every

company needs 80% fewer developers?" (P003, Enterprise Developer)

16

4.1.2 Selective Adopters: Adopts AI Coding Tools but Uses Them Selectively

Seven participants described maintaining deliberate boundaries while integrating Al coding
tools. This cluster represented the largest group, spanning banking, aviation, fintech, and
telecommunications sectors. Their experience ranged from 3-10 years, with regulatory

constraints often shaping boundary decisions.
Common Al Boundaries and Tool shortcomings
Participants consistently emphasised contextual decision-making:

"It's a tool, not a rule. I decide when and how to use it based on what is appropriate. Critical
path code, authentication, payment processing, data handling, which is all me. Al handles the

scaffolding around it." (P006, Banking Engineer)

P007 highlighted regulatory constraints: "Banking regulations mean some things must remain
under human control. I delegate UI components but never core transaction logic. Every line

of code touching money has my fingerprints on it."

These boundaries were not arbitrary but reflected what Schon (1983) might term "reflection-
in-action", professional judgment developed through experience about where Al assistance

helps versus hinders.
Learning Through Experience

P008's journey describes how his role has changed through task automation and code

generation.

"I went too deep with Al at first, lost touch with code, then pulled back. Now I know the
balance. I got to a point where I was going to write some unit tests and thought 'I shouldn't

need to ask Al how to do this.' That was my wake-up call."

This participant's described how Al lacks context on legacy system: "New features get maybe
50% checking. Anything touching existing systems gets line-by-line review. Legacy code has

decades of undocumented decisions, Al can't understand what nobody wrote down."

P009 observed community fragmentation: "The developer community is splitting. You have
Al evangelists who have drunk the Kool-Aid, balanced users trying to find middle ground,

and traditionalists clinging to the old ways. We're losing our shared language."

17

Skill Preservation Strategies Used by Developers.

PO11 implemented structured preservation: "Every Friday is no-Al day. I code everything
manually to keep skills sharp. A master carpenter uses power tools but remains a carpenter. |

use Al coding tools but remain a developer."

P012 used Al for specific product management tasks: "User stories, acceptance criteria, test
scenarios, Al excels at structure. But understanding what stakeholders need versus what they

say? That's irreducibly human."
4.1.3 Conscious Resisters: Knowledge Preservation and Al Rejection

Two participants actively resisted Al integration while acknowledging its existence. Both had
6-10 years' experience and worked in contexts where deep understanding and code

complexity is more important compared to traditional full stack development.
Philosophical Stance
P013 articulated principled opposition:

"If you're using Al to do the work, you're not learning. You are just getting output. Someone
needs to preserve real understanding. While others become Al operators, I maintain true

developer knowledge."

When pressed, PO13 admitted minimal adoption: "For tests, okay, it's repetitive enough that
Al makes sense. But if I must use it for a demo or something, I rewrite everything it produces

to ensure I understand every line."
Unexpected Value Creation

P014, despite forced compliance with company requirements, discovered unique positioning:
"I've become the go-to person for reviewing Al-generated code. Ironically, resisting Al has
made me more valuable because I can spot what others miss, the subtle bugs, the security

holes, the architectural anti-patterns that Al perpetuates."
4.2 Infrastructure Development Patterns

The research revealed how the studies participants across all clusters developed their Al
coding tool infrastructure, though the nature and purpose of these infrastructures varied

significantly on the tasks and role they have as a developer.

18

Infrastructure, as revealed in this study, represents organisational systems that amplify Al
coding tool capabilities through recursive knowledge accumulation. This finding extends
beyond individual tool use, revealing how organisations build systematic capabilities that
make Al coding tools exponentially more valuable than generic Al infrastructure. Across all
clusters, participants developed systematic capabilities representing what Star and Griesemer
(1989) term "boundary objects", artifacts coordinating between human and Al actors. These
infrastructures varied in scope and purpose but universally represented considerable time

investment for long term productivity increases.
4.2.1 Comprehensive Developer Infrastructure — Full Tool Integration

Complete Transformers commonly built comprehensive systems with organised prompt
libraries. They invested time developing domain-specific prompts for specialised tasks they
can use to quickly tackle common tasks. Their infrastructure is integrated access to their
organisation’s knowledge bases, connecting their tools to internal wikis, documentation, and

historical code.
4.2.2 Selective Al Infrastructure — Limited Tool Integration

Selective Adopters created systems featuring more extensive validation protocols with
specific checklists for Al-generated code. They developed legacy system integration
guidelines defining rules for when Al could modify existing systems. Their infrastructure was
limited and only focused on specific tasks they felt were beneficial but kept certain tasks
entirely in their own purview. Al delegation decisions, team collaboration frameworks
establishing protocols for Al-assisted pair programming, and quality assurance workflows

implementing multi-stage review processes for Al contributions.
4.3 Task Transformation Patterns

Analysis revealed both universal patterns and cluster-specific variations in task delegation,
suggesting certain tasks have inherent characteristics making them suitable or unsuitable for
Al assistance. These patterns align with Actor-Network Theory's concept of delegation,
where certain activities are redistributed within the human-Al network based on their

characteristics and the developer’s willingness to delegate that task to Al coding tools.

19

Frequency of Al delegation across different task types based on interview analysis. Patterns show how each cluster approaches task distribution between human and Al work

I Complete Transformers [l Selective Adopters [l Conscious Resisters

Architecture Design

Security Implementation

Performance Optimization

Database Design

Algorithm Implementation

Debugging

Bug Fixing

Refactoring

Task Type

API Integration

Code Review

Documentation

Unit Test Writing

Boilerplate Generation

Code Translation

Learning New Languages

Never

e

]

@°
<

Sometimes Often Always

Freqguency of Al Delegation

Figure 3: Illustrates these delegation patterns across clusters, revealing both convergent and
divergent approach.

Certain tasks showed consistent delegation across clusters:

Test writing (12/14 participants): "Deterministic input-output mappings" Documentation
(11/14 participants): "Explaining what exists" Boilerplate code (10/14 participants): "Patterns
repeated thousands of times" Data validation (9/14 participants): "Rule-based

transformations" API integration (8/14 participants): "Following documented patterns™?

P006 explained the consensus: "Tests are perfect for Al, repetitive, pattern-based, clear

success criteria. Even if it gets edge cases wrong, it's faster to fix than write from scratch."
4.3.2 Persistent Human Tasks Across Clusters
Conversely, specific tasks remained human-controlled:

Architecture design (0/14 delegated): "Requires understanding unstated requirements"
Security implementation (1/14 delegated): "Too high-risk for probabilistic solutions" Core
business logic (1/14 delegated): "Embeds crucial domain knowledge" Performance
optimisation (2/14 delegated): "Requires deep system understanding" User experience

decisions (0/14 delegated): "Needs human empathy and context"

P003 articulated shared reasoning: "Al can suggest patterns, but architecture requires
understanding business context, future scaling, team capabilities, things that exist in people's

heads, not documentation."

20

4.3.3 How Do They Validate and Review Al Generated Code.

Validation approaches varied systematically by cluster. Complete Transformers reported
minimal validation (20-30%), with POO1 explaining: "Once you've trained the Al properly
with your infrastructure, it knows your patterns. I spot-check for logical coherence, not

syntax."

Selective Adopters validated contextually (50-80%), while Conscious Resisters maintained
complete validation. PO13 noted: "Seeing Al's mistakes actually made me better at

understanding why certain patterns work. It's like teaching, you learn by correcting errors."
4.3.4 Vibe Coding: A Shift in Programming Practice and Code Generation

An unexpected finding among Complete Transformers was "vibe coding”, an intuitive,
iterative approach to Al-assisted development representing a fundamental shift in

programming epistemology.

POO1 articulated this practice: "I iterate with the Al until the solution feels right. It is more art
than science now. I can't always explain why something is correct, but I know it when I see

it."

This approach challenges traditional programming's emphasis on logical reasoning and
explicit understanding. Vibe coding operates through pattern recognition and intuitive
validation rather than formal verification. PO02 noted: "It's like jazz improvisation, you have
a general direction but you're responding to what the Al gives you, building on it, redirecting

when needed."

21

Before and after workflow transformations showing how each cluster has adapted their development practices with Al integration.

Complete Transformers Selective Adopters Conscious Resisters
Traditional: Write Code (Days) Traditional: Core Logic (Retained) Traditional: Manual Coding
1 1 1
Al-Integrated: Orchestrate Al Agents (Hours) Hybrid: Human Core + Al Support Preserved: Deep Understanding Required
Traditional: Debug Manually Traditional: Security Review Traditional: Problem Solving
1 1 1
Al-Integrated: Al Identifies & Fixes Hybrid: Human-Led + Al Scanning Preserved: First Principles Thinking
Traditional: Document Later Traditional: Testing Traditional: Knowledge Transfer
1 1 1
Al-Integrated: Auto-Documentation Hybrid: Al Generation + Human Review Preserved: Human Mentorship

Figure 4: Synthesis of these workflow transformations, demonstrating how each cluster has
reconstructed their development practice.

4.4 Emerging SKkills in Software Development

Participants reported simultaneous skill acquisition and atrophy patterns varying by cluster,
suggesting transformation involves skill substitution rather than simple enhancement. This
finding resonates with Affordance-Actualisation Theory's emphasis on how technology
affordances reshape capabilities, the same Al coding tools afford different skill developments

based on how actors actualise them within their practice.
Each cluster developed distinct new competencies reflecting their transformation approach:

Complete Transformers acquired advanced prompt engineering capabilities for building
conversational architectures, multi-agent orchestration skills for managing parallel Al
processes, infrastructure design expertise for creating scalable knowledge systems, and rapid

technology adoption abilities for learning new frameworks through Al.

Selective Adopters developed boundary judgment skills for knowing when Al helps versus
hinders, hybrid workflow management capabilities for seamlessly switching modes, context-
specific validation expertise for risk-adjusted review strategies, and collaborative prompting

abilities for getting Al to explain its reasoning.

Conscious Resisters enhanced Al error detection capabilities for spotting characteristic Al

mistakes, traditional debugging mastery for understanding without assistance, deep

22

architectural understanding for seeing system-wide implications, and knowledge preservation

skills for documenting the undocumented.
4.4.2 Traditional Skill Trajectories

Self-reported skill retention varied dramatically, with participants showing awareness of
trade-offs. Complete Transformers acknowledged significant atrophy, with PO0O1 admitting: "I
probably couldn't write a complex sorting algorithm from scratch anymore. But I can

architect systems 10x more complex than before. It's a different kind of capability."
4.5 The Junior Developer Crisis: Consistent Concern Among Participants

All participants, regardless of cluster affiliation, expressed concern about junior developer
skill development - the only finding achieving complete consensus across all interviews. This
aligns with industry observations about the "70% problem" where Al tools enable rapid initial

progress but struggle with the complex final stages of development (Osmani, 2024).
4.5.1Traditional Learning Disruption

P002 discussed their fears about junior engineer education: "Where will juniors learn
debugging when Al fixes errors instantly? How will they develop intuition without struggling

through problems? The struggle is where learning happens."

P006 emphasised practical implications: "When production breaks at 3 AM, you need
understanding, not just Al assistance. Where will juniors get that experience if they have

never debugged without help?"

This concern reflects broader industry patterns where Al tools may be creating what Osmani
(2025) terms a generation gap between those who learned programming fundamentals before

Al and those who are learning with Al from the beginning.
4.5.2 Organisational and Economic Impacts

P003 noted structural impacts: "Junior developers with Al can produce what previously
would have needed senior developers before. It is disrupting our whole team structure and

salary bands. Why pay senior rates for Al-augmented juniors?"

P014 identified mentorship breakdown: "Traditional mentorship is breaking down. Juniors
ask Al before asking seniors. We're losing knowledge transfer mechanisms that built this

profession."

23

4.6 Professional Futures: Divergent Visions on the future of developers

Participants' future projections reflected their cluster positioning and transformation
experiences. These visions revealed deep uncertainty about professional trajectories, with

each cluster imagining different endpoints.

P001 predicted radical discontinuity: "In five years, 'developer' will sound like 'typist', a

quaint historical role. We'll be Al conductors, not code writers."

P006 envisioned sustained hybridity: "There will always be need for humans who understand
both traditional development and Al capabilities. The boundary managers will become the

most valuable."

P013 anticipated cyclical return: "When Al-generated technical debt becomes crushing,
organisations will desperately seek developers who actually understand code. Mark my

words, traditional skills will command premium prices."
4.7 Summary

These findings reveal Al coding Tool integration as producing three distinct, stable
configurations rather than universal transformation. Infrastructure development emerged as
critical differentiator across all clusters, with each group building different systems to support
their transformation approach. While task delegation showed both convergent patterns (tests,
documentation) and persistent human domains (architecture, security), these patterns

reflected deeper epistemological shifts in how developers conceptualise their work.

The emergence of concepts like "vibe coding" and infrastructure scaffolding suggests Al
coding tools are not merely augmenting existing practices but creating fundamentally new
forms of development practice. The concerns expressed by all participants about junior
pipelines suggests this area warrants attention on the challenges emerge through the

implementation of these tools.

The diversity of responses, from Complete Transformers' radical reconstruction to Conscious
Resisters' principled preservation, indicates that professional practice transformation follows
multiple pathways rather than converging toward a single future state. These findings
contribute to understanding technology-mediated professional transformation by revealing
how identical tools can produce divergent outcomes based on how practitioners choose to

integrate them into their professional identity and practice.

24

Chapter 5: Discussion

This chapter interprets the findings through integrated theoretical lenses ANT and AAT,
examines how Al coding tools transform software development and discusses the three-

cluster framework that emerged from the analysis.
5.1 Addressing the Research Objectives

Having demonstrated how the research objectives have been addressed through empirical
investigation, these findings now enable significant theoretical contributions that extend

beyond the immediate context of software development.
5.1.1 Task Allocation and Agency Distribution (Objective 1)

The first objective examined how Al coding tools reconfigure task allocation, these findings
reveal complex patterns of task reallocation that extend beyond simple delegation. Universal
delegation of testing (86%), documentation (79%), and boilerplate code (71%) represents
what Latour (1986) terms "obligatory passage points", tasks where Al achieves network
enrolment across all configurations. This contrasts sharply with Peng et al. (2023)
productivity focus, revealing transformation as fundamental practice restructuring rather than

efficiency enhancement.

Complete Transformers' parallel development model, orchestrating multiple Al agents
simultaneously, represents unprecedented agency distribution. When P002 describes
"managing Al students," this is not metaphorical but reflects genuine agency redistribution
where Al actors make autonomous decisions within bounded contexts. This empirical finding
extends ANT beyond Callon (1986) human-centric translation model, suggesting Al achieves
what I term "bounded actor status", autonomous within defined parameters while remaining

subordinate to human orchestration.

Conversely, universal retention of architecture design (100%), security implementation
(93%), and core business logic (93%) challenges technological determinism prevalent in
current literature. These boundaries persist not from technical limitations but from what
participants identified as irreducibly human competencies: contextual understanding, ethical

judgment, and tacit knowledge integration (Schon, 1983).

25

5.1.2 Emergent Competencies and Skill Transformation (Objective 2)

The second objective identified emergent competencies, in the findings we saw skill
evolution patterns directly contradict linear upskilling narratives dominating practitioner
discourse (Brynjolfsson et al., 2023). Infrastructure scaffolding emerges as the critical meta-
competency, not individual prompt engineering but organisational capability building. This
finding aligns with Hanseth and Lundberg (2001) work-oriented infrastructures while

extending it to human-Al contexts.

Complete Transformers' skill profile presents a paradox unaddressed in literature: traditional
skill atrophy (manual coding 45% retained) coupled with claimed enhanced capabilities
("architect systems 10x more complex"). This is not simple substitution but fundamental
competency restructuring. Their "vibe coding" practice, iterating with Al until solutions "feel
right", represents new epistemic practice where validation shifts from logical verification to

intuitive assessment.

This phenomenon of vibe coding deserves deeper theoretical exploration. It represents what
Polanyi (1966) termed "tacit knowledge" but inverted, rather than explicit knowledge
becoming tacit through practice, Al enables tacit pattern recognition to replace explicit
reasoning. Participants describe "knowing" when code is correct without being able to
articulate why, suggesting Al coding tools enable a form of intuitive programming that
bypasses traditional logical scaffolding. This epistemic shift has profound implications for
how we conceptualise programming expertise, moving from rule-based reasoning to pattern-

based intuition mediated by Al collaboration.

Selective Adopters' balanced approach (75% traditional skill retention) appears optimal but
carries hidden costs. PO11's "no-Al Fridays" reveals the exhausting vigilance required to

maintain dual competencies.
5.1.3 Professional Identity Reconstruction (Objective 3)

The third objective explored professional identity reconstruction, the identity transformation
patterns reveal deeper complexity than Wenger (1998) community of practice framework
suggests. Rather than shared practice evolution, we observe community fragmentation into
distinct professional subspecies. Complete Transformers' educational metaphors ("teacher,"

nn

"professor," "orchestrator") represent not role expansion but fundamental identity

replacement.

26

The universal junior developer concern transcends individual transformation, revealing
collective anxiety about professional reproduction. This finding extends beyond previous
technological transitions (such as the shift from manual coding to IDEs or the adoption of
Stack Overflow) because Al disrupts the apprenticeship model itself. When P009 observes
"juniors ask Al before asking seniors," this represents breakdown of knowledge transfer

mechanisms essential for community sustainability.

Conscious Resisters' identity as knowledge guardians provides unexpected insight. Their
value increases precisely because others abandon traditional skills, creating what labour
economists’ call "skill complementarity" (Acemoglu and Autor, 2011), their expertise
becomes more valuable as it becomes rarer. This challenges success-biased adoption

literature by revealing resistance as potentially rational career strategy.
5.2 Theoretical Contributions
5.2.1 Al coding tool Infrastructure

Infrastructure extends beyond individual tool use to organisational capability building. These
finding challenges individual-focused adoption models (TAM, UTAUT) by revealing
competitive advantage arising from systematic amplification systems rather than individual

proficiency (Venkatesh et al., 2003).

However, infrastructure creates what I term "capability lock-in". The same systems enabling
productivity may constrain future flexibility. POO1's 50+ markdown files require constant
maintenance; P004's enterprise integrations create vendor dependencies. This dark side of

infrastructure investment remains unexplored in enthusiastic practitioner accounts.

Infrastructure emerges as potential differentiator in successful Al coding tool use, yet this
finding carries troubling implications. As organisations build proprietary Al amplification
systems, they create new forms of technical debt and vendor lock-in. The same infrastructure
enabling today's productivity gains may become tomorrow's legacy burden, a possibility

developer has not fully considered in their transformation.
5.2.2 The Network-Affordance Integration Model

This study's primary theoretical contribution synthesises ANT and AAT to explain differential
transformation outcomes. Rather than treating network position and affordance perception as

independent variables, common in existing IS literature. Typically, this model reveals their

27

recursive relationship. Network position shapes which affordances actors can perceive
(Complete Transformers' reconstructed networks enable seeing Al as collaborative partners),
while affordance actualisation patterns recursively reshape networks (infrastructure

investments lock in transformation pathways).

P008's journey empirically demonstrates this recursion: enthusiastic adoption — over-
dependence — network degradation — affordance re-evaluation — selective adoption. This
movement between clusters reveals transformation as dynamic process rather than stable

state, suggesting clusters represent temporary equilibria subject to disruption.

The model addresses a critical gap in Strong et al. (2014) framework, which assumes
successful actualisation. By documenting failed actualisations and conscious non-
actualisation, this study reveals the complete actualisation spectrum, including resistance as

legitimate outcome rather than failure.

Figure 5.1: Network-Affordance Integration Model

influences leads to
Network Affordance Al Tool
Position Perception Use
| — —
(Role in human- (What Al can do (How | actually
Al network) for me) use Al)

G

RECURSIVE LOOP: How you use Al changes your network position

Three Different Outcomes from Same Al Tools:

f ' r '’ f '
Complete Selective Conscious
Transformers Adopters Resisters
See Al as- "Teaching See Al as "Useful See Al as” "Threat to
Partner” Tool" Expertise”
Outcome: Become Al Qutcome: Maintain Outcome: Preserve
orchestrators boundaries traditional skills
\, o’ \, 7 N, .

Figure 5: Illustrates this recursive relationship between network position and affordance
perception.

28

5.2.3 Three-Cluster Framework

Rather than adoption stages, the three clusters that emerged from the research represent

configurations with distinct advantages:
e Complete Transformers: Maximum productivity at dependency cost.
o Selective Adopters: Sustainable balance through specific task selection.
o Conscious Resisters: Protecting Code Output from Al mistakes.

This framework challenges stage models' teleological assumption of convergence toward
universal adoption. Instead, ecosystem diversity may prove essential for professional

resilience, with each cluster serving distinct market needs (March 1991).
5.3.4 Transformation Beyond Just Productivity

Peng et al. (2023) 55.8% productivity gain narrative obscures transformation complexity
revealed here. Productivity metrics fail to capture identity reconstruction, skill atrophy, or
infrastructure investment costs. More critically, they assume productivity equals value. P003's
reflection on "automating away our own customers" reveals productivity's potential self-

destructiveness.

The "70% problem" documented by Osmani (2024) illustrates this complexity. While Al tools
dramatically accelerate initial development phases, they struggle with the nuanced final
stages that require deep understanding. This creates a false sense of productivity that may

mask growing technical debt and reduced comprehension.

Unlike studies celebrating Al adoption (Bird et al., 2022; Brynjolfsson et al., 2023), this
research documents resistance as rational strategy. Conscious Resisters are not technophobes

but strategic actors positioning for future value when deep understanding becomes scarce.
5.4 Practical Implications
5.4.1 Organisational Strategies from These Findings

This research indicated that organisations might benefit from considering abandon

convergence assumptions and support cluster diversity:

For Complete Transformers: Invest in infrastructure while maintaining skill redundancy.
Create "break-glass" protocols for when Al systems fail. Document tacit knowledge before it

disappears.

29

For Selective Adopters: Provide boundary clarification tools and decision frameworks.
Recognise the exhausting nature of constant boundary negotiation. Create spaces for

reflection and adjustment.

For Conscious Resisters: Value their role as quality guardians and error detectors. Position
them in code review and architectural oversight roles. Preserve their expertise through formal

knowledge transfer programs.
5.4.2 Addressing the Junior Developer Crisis
The universal concern about junior pipelines suggests areas for consideration:

1. Redesign Learning Pathways: Create structured struggles that develop debugging

intuition.
2. Hybrid Mentorship Models: Combine Al assistance with human guidance.

3. Competency Frameworks: Redefine what constitutes junior developer expertise in Al

age.

4. Protected Learning Spaces: Establish "Al-free" zones for fundamental skill

development.
5.4.3 Individual Developer Strategies
Developers might consider conscious cluster choices based on career goals and risk tolerance:

e Choose Complete Transformation for maximum short-term productivity accepting

obsolescence risk.

e Choose Selective Adoption for sustainable balance accepting constant negotiation

burden.
o Choose Conscious Resistance for deep expertise betting on future scarcity value.

Movement between clusters remains possible and encouraged, developers should view the

current position as a strategic choice rather than permanent identity.
5.5 Implications of Advancing AI Capabilities

As Al coding tools improve, these patterns may evolve along with the technology. Complete
Transformers might become more dependent or find new boundaries. Selective Adopters may

need to continuously readjust their boundaries. Conscious Resisters might find their expertise

30

valuable but also could be outpaced by people using Al coding tools. New patterns might
emerge beyond these three clusters This study captures a specific moment; longitudinal
research is needed to track pattern stability. The conclusion now synthesizes these insights to

address the central research question and chart directions for future investigation.

31

Chapter 6: Conclusion
6.1 Answering the Research Question

This dissertation began by questioning whether developers are simply adopting new tools or
experiencing fundamental professional reconstruction. The evidence clearly supports the

latter, revealing transformation as ecosystem diversification rather than convergent adoption.

The 14 developers in this study demonstrated three different approaches: Complete
Transformers who reconstruct their identity around Al orchestration, Selective Adopters who
maintain strategic boundaries through constant negotiation, and Conscious Resisters who
preserve traditional expertise as future competitive advantage. This is not linear progression
it's ecosystem diversification, with each approach representing a viable response to Al

disruption.

Beyond individual transformation lies a collective crisis: the breakdown of professional
reproduction. Every participant, regardless of cluster, expressed concern about junior
developers. When Al automates entry-level tasks, traditional learning through struggle

disappears, threatening the tacit knowledge development essential for expertise.
6.2 Theoretical Contributions

The Network-Affordance Integration Model developed through this research advances IS
theory by revealing transformation as recursive causality. Network position shapes what
developers see as possible with Al, while their choices reshape their position creating

divergent evolution rather than convergent adoption.

ANT revealed how Al becomes an active participant reshaping development network, when
developers describe "managing Al students," they recognise Al's actor status. AAT explained
why identical tools produce three different patterns based on organisational context and
individual perception. Together, they show transformation emerging from network-affordance

configurations, not individual choice, or technological determinism.

Infrastructure scaffolding was consistent throughout the interviews. Complete Transformers'
elaborate systems of prompt libraries and documentation create exponential value, while
Selective Adopters' boundary protocols enable sustainable practice. Yet this infrastructure

creates its own trap. Today’s competitive advantage becomes tomorrow's technical debt.

32

The emergence of 'vibe coding' where developers iterate until solutions 'feel right' without
understanding why this represents a fundamental shift from logical to intuitive programming,
raising questions about the nature of programming expertise. Increased code will be produced
without the creator understanding how it works, we could see this trend continue as Al tools

become so good that human coders are no longer competitive.

Contribution Type Key Finding Challenges to Existing Literature

Theoretical Network-Affordance Integration Model: Reveals Linear adoption models (TAM, UTAUT)
recursive relationship between network position and that assume stable technology boundaries
affordance perception, explaining divergent and universal progression
transformation outcomes

Empirical Three Stable Clusters: Complete Transformers Success bias in AT literature and
(36%), Selective Adopters (50%), and Conscious assumptions of mevitable convergence
Resisters (14%) represent distinet configurations, not toward universal adoption
adoption stages

Conceptual Infrastructure Scaffolding: Organisational AT Individual-focused adoption frameworks
amplification systems (prompt libraries, workflows) that overlook organisational capability
emerge as crifical differentiator in transformation building
success

Practical Junior Developer Crisis: Universal concern across all | Productivity-only metrics (e.g., Peng et
clusters about skill development pipeline breakdown as | al's 55.8%) that ignore professional
AT automates entry-level tasks reproduction and knowledge transfer

Methodological Resistance as Strategy: Documents conscious nomn- Binary adoption/rejection frameworks that
adoption as rational career positioning for future frame resistance as failure rather than
scarcity value, not technophobia strategic choice

Epistemological "Vibe Coding" Practice: Iterative, intuitive AT Traditional conceptualisations of

collaboration represents shift from deterministic to

pattern-based programming validation

Table 2: Research Contributions Summary

6.3 Practical Implications

programming expertise based on logical

reasoning and explicit understanding

For Organisations: Competitive advantage may come from supporting diversity, not forcing

convergence. Innovation benefits from Complete Transformers, stability emerges from

Selective Adopters, quality assurance strengthens through Conscious Resisters. Organisations

may benefit from all three operating in productive tension.

Specific practices illustrate these differences. Complete Transformers validate only 20-30%

of Al output, trusting their infrastructure to ensure quality. Selective Adopters validate 50-

80% based on context, with some implementing 'no-Al Fridays' to preserve skills. Conscious

33

Resisters maintain 100% validation, catching subtle errors others miss. Notably, all clusters
delegate testing to Al but preserve architecture design for humans, revealing shared

boundaries even amid divergence.

For Education: Traditional mentorship models assuming gradual skill building face

disruption. Institutions might consider developing parallel pathways:
e Al-native curricula for orchestration skills
e Hybrid programs balancing traditional and Al-augmented abilities.
e Preservation tracks maintaining deep technical expertise.
For Individuals: Career choices may involve conscious trade-off evaluation:
e Complete Transformation: Maximum productivity, maximum dependency
o Selective Adoption: Sustainable balance, constant boundary work
o Conscious Resistance: Deep expertise, betting on scarcity value
6.4 Limitations of the Study

The underrepresentation of Conscious Resisters (n=2) particularly limits claim about
resistance patterns. Analytical Constraints Single-researcher coding, while systematic it lacks
inter-rater reliability validation. The exclusive reliance on self-reported data without
behavioural observation means findings capture perceptions rather than verified practices.

The three clusters represent analytical patterns in this data, not definitive categories.

Contextual and Temporal Boundaries Findings reflect Western, English-speaking contexts
and may not apply to other cultural or regulatory environments. The cross-sectional design
during rapid Al evolution means these patterns may already be shifting. What appears stable

in 2025 may prove transitional as Al capabilities advance.
6.5 Future Research Imperatives

Longitudinal Studies: Track cluster stability over 2-3 years. Do Complete Transformers

sustain enthusiasm as complexity grows?

Cross-Cultural Analysis: How do collectivist cultures shape patterns? How do regulations

influence boundaries?

34

Junior Developer Focus: How can the profession transfer knowledge without traditional
pathways? What defines expertise in Al-mediated contexts? Can we design learning that

develops both Al fluency and fundamental understanding?

Al Evolution: As Al capabilities advance, these patterns may intensify rather than converge.
Better Al could make Complete Transformers more dependent, force Selective Adopters to
constantly readjust boundaries, and either vindicate or make Conscious Resisters obsolete.
The clusters might diverge further rather than merge, creating even more specialised

professional subspecies.
6.6 Broader Significance

Software development's transformation previews knowledge work's Al-mediated future. As
legal research, medical diagnosis, and engineering design face similar disruptions, our
findings offer crucial insights. The three-cluster framework demonstrates that professions

need not converge on single practices, showing diversity enables resilience.

This challenges techno-solutionist narratives. Productivity gains carry hidden costs: skill
atrophy, infrastructure dependencies, reproduction crises. Most fundamentally, professional
identity suggest that it is more fluid than acknowledged. Participants did not just adopt tools;
they reconstructed what it means to be a developer. From "code writers" to "Al teachers,"
from "developers" to "orchestrators," these shifts represent profound reformation requiring

support as Al transforms knowledge work.
6.7 Final Reflections

These findings suggest the profession might benefit from maintaining this ecosystem
diversity, not identifying a "winning" approach. Wisdom lies not in predicting the dominance
of one approach but accepting the diversity. At this inflection point, the choice is not whether
to embrace or resist Al, but how to consciously shape your personal professional practice in
software developement. Their divergent paths illuminate not just software development's
future, but the transformation awaiting knowledge work in the Al era. The developers in this
study, if orchestrating these Al symphonies, negotiating careful boundaries, or preserving

traditional craft they are engaged in the essential work of professional reformation.

35

References

Acemoglu, D., & Autor, D. (2011). Skills, tasks and technologies: Implications for
employment and earnings. In O. Ashenfelter & D. Card (Eds.), Handbook of labor economics
(Vol. 4, pp. 1043-1171). Elsevier. https://doi.org/10.1016/S0169-7218(11)02410-5

Ammar, A., Corda, V., Prisco, G., Foggia, M., Erra, U., & Colonnese, S. (2024). From today's
code to tomorrow's symphony: The Al transformation of developer's routine by 2030. arXiv
preprint arXiv:2405.12731. https://arxiv.org/html/2405.12731v]1

Barke, S., James, M. B., & Polikarpova, N. (2023). Grounded copilot: How programmers
interact with code-generating models. Proceedings of the ACM on Programming Languages,
7(OOPSLA1), 85-111. https://doi.org/10.1145/3586030

Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk, T., &
Gazit, 1. (2022). Taking flight with copilot: Early insights and opportunities of Al-powered
pair-programming tools. ACM Queue, 20(6), 35-57. https://doi.org/10.1145/3589996

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research
in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706gp0630a

Braverman, H. (1974). Labor and monopoly capital: The degradation of work in the
twentieth century. Monthly Review Press.

Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative Al at work (NBER Working
Paper No. 31161). National Bureau of Economic Research. https://doi.org/10.3386/w31161

Callon, M. (1986). The sociology of an actor-network: The case of the electric vehicle. In M.
Callon, J. Law, & A. Rip (Eds.), Mapping the dynamics of science and technology (pp. 19-
34). Macmillan.

Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Aldraiweesh, A., Alturki, U., Almutairy, S.,
Shutaleva, A., & Soomro, R. B. (2024). Extended TAM based acceptance of Al-Powered
ChatGPT for supporting metacognitive self-regulated learning in education: A mixed-
methods study. Heliyon, 10(8), €29317. https://doi.org/10.1016/j.heliyon.2024.e29317

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Engineering Enablement. (2025, April 2). 5 strategies for mentoring junior developers in the
Al era [Blog post]. https://engineeringenablement.substack.com/p/5-strategies-for-mentoring-

junior

Gibson, J. J. (1979). The ecological approach to visual perception. Houghton Mifflin.

GitHub. (2024). Survey: The AI wave continues to grow on software development teams.
https://github.blog/news-insights/research/survey-ai-wave-grows/

Goel, N. (2025, February 14). New junior developers can't actually code [Blog post].
https://nmn.gl/blog/ai-and-learning

36

https://doi.org/10.1016/S0169-7218(11)02410-5
https://arxiv.org/html/2405.12731v1
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3589996
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.3386/w31161
https://doi.org/10.1016/j.heliyon.2024.e29317
https://doi.org/10.2307/249008
https://engineeringenablement.substack.com/p/5-strategies-for-mentoring-junior
https://engineeringenablement.substack.com/p/5-strategies-for-mentoring-junior
https://github.blog/news-insights/research/survey-ai-wave-grows/
https://nmn.gl/blog/ai-and-learning

Gomez, C., Cho, S. M., Ke, S., Huang, C. M., & Unberath, M. (2024). Human-AlI
collaboration is not very collaborative yet: A taxonomy of interaction patterns in Al-assisted
decision making from a systematic review. Frontiers in Computer Science, 6, Article
1521066. https://doi.org/10.3389/fcomp.2024.1521066

Google Cloud. (2025). Real-world gen Al use cases from the world's leading organizations.
https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-

leaders

Gross, G. (2025, May 22). Al coding assistants wave goodbye to junior developers. CIO.
https://www.cio.com/article/3509174/ai-coding-assistants-wave-goodbye-to-junior-

developers.html

Hanseth, O., & Lundberg, N. (2001). Designing work-oriented infrastructures. Computer
Supported Cooperative Work, 10(3), 347-372. https://doi.org/10.1023/A:1011290912635

Holden, R. J., & Karsh, B. T. (2019). Beyond TAM and UTAUT: Future directions for HIT
implementation research. Journal of Biomedical Informatics, 100, 103315.
https://doi.org/10.1016/].jb1.2019.103315

JetBrains. (2024). The State of Developer Ecosystem 2024.
https://www.jetbrains.com/lp/devecosystem-2024/

Latour, B. (1986). The powers of association. In J. Law (Ed.), Power, action and belief: A
new sociology of knowledge? (pp. 264-280). Routledge & Kegan Paul.

Latour, B. (1987). Science in action: How to follow scientists and engineers through society.
Harvard University Press.

Latour, B. (2005). Reassembling the social: An introduction to actor-network theory. Oxford
University Press.

Law, J. (2009). Actor network theory and material semiotics. In B. S. Turner (Ed.), The new
Blackwell companion to social theory (pp. 141-158). Blackwell.

Leonardi, P. M. (2011). When flexible routines meet flexible technologies: Affordance,

constraint, and the imbrication of human and material agencies. MIS Quarterly, 35(1), 147-
167. https://doi.org/10.2307/23043493

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage.

March, J. G. (1991). Exploration and exploitation in organizational learning. Organization
Science, 2(1), 71-87. https://doi.org/10.1287/orsc.2.1.71

Markus, M. L., & Silver, M. S. (2008). A foundation for the study of IT effects: A new look at
DeSanctis and Poole's concepts of structural features and spirit. Journal of the Association for
Information Systems, 9(10), 609-632. https://doi.org/10.17705/1jais.00176

37

https://doi.org/10.3389/fcomp.2024.1521066
https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
https://cloud.google.com/transform/101-real-world-generative-ai-use-cases-from-industry-leaders
https://www.cio.com/article/3509174/ai-coding-assistants-wave-goodbye-to-junior-developers.html
https://www.cio.com/article/3509174/ai-coding-assistants-wave-goodbye-to-junior-developers.html
https://doi.org/10.1023/A:1011290912635
https://doi.org/10.1016/j.jbi.2019.103315
https://www.jetbrains.com/lp/devecosystem-2024/
https://doi.org/10.2307/23043493
https://doi.org/10.1287/orsc.2.1.71
https://doi.org/10.17705/1jais.00176

METR. (2025). Measuring the impact of early-2025 Al on experienced open-source
developer productivity. https://metr.org/blog/2025-01-10-early-2025-ai-experienced-os-dev-

study/

Microsoft. (2024). Al at work is here. Now comes the hard part: 2024 Work Trend Index.
https://www.microsoft.com/en-us/worklab/work-trend-index/ai-at-work-is-here-now-comes-

the-hard-part

Noble, D. F. (1984). Forces of production: A social history of industrial automation. Knopf.

Orlikowski, W. J. (2007). Sociomaterial practices: Exploring technology at work.
Organization Studies, 28(9), 1435-1448. https://doi.org/10.1177/0170840607081138

Osmani, A. (2024, December 4). The 70% problem: Hard truths about Al-assisted coding
[Blog post]. Addy Osmani's Substack. https://addyo.substack.com/p/the-70-problem-hard-
truths-about

Osmani, A. (2025a, April 25). Avoiding skill atrophy in the age of Al [Blog post]. Addy
Osmani's Substack. https://addyo.substack.com/p/avoiding-skill-atrophy-in-the-age

Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of Al on developer
productivity: Evidence from GitHub Copilot. arXiv preprint arXiv:2302.06590.
https://doi.org/10.48550/arXiv.2302.06590

Perry, N., Srivastava, M., Kumar, D., & Boneh, D. (2023). Do users write more insecure code
with Al assistants? In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security (pp. 2785-2799). Association for Computing Machinery.
https://doi.org/10.1145/3576915.3623157

Polanyi, M. (1966). The tacit dimension. Doubleday.

Schon, D. A. (1983). The reflective practitioner: How professionals think in action. Basic
Books.

Stack Overflow. (2024). 2024 Developer survey. https://survey.stackoverflow.co/2024/

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, 'translations' and boundary
objects: Amateurs and professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39.
Social Studies of Science, 19(3), 387-420. https://doi.org/10.1177/030631289019003001

Strong, D. M., Volkoff, O., & Elmes, M. B. (2003). ERP systems and the paradox of control.
Proceedings of the Americas Conference on Information Systems, Tampa, FL.
https://aisel.aisnet.org/amcis2003/63/

Strong, D. M., Volkoff, O., Johnson, S. A., Pelletier, L. R., Tulu, B., Bar-On, L., Trudel, J., &
Garber, L. (2014). A theory of organization-EHR affordance actualization. Journal of the
Association for Information Systems, 15(2), 53-85. https://doi.org/10.17705/1jais.00353

38

https://metr.org/blog/2025-01-10-early-2025-ai-experienced-os-dev-study/
https://metr.org/blog/2025-01-10-early-2025-ai-experienced-os-dev-study/
https://www.microsoft.com/en-us/worklab/work-trend-index/ai-at-work-is-here-now-comes-the-hard-part
https://www.microsoft.com/en-us/worklab/work-trend-index/ai-at-work-is-here-now-comes-the-hard-part
https://doi.org/10.1177/0170840607081138
https://addyo.substack.com/p/the-70-problem-hard-truths-about
https://addyo.substack.com/p/the-70-problem-hard-truths-about
https://addyo.substack.com/p/avoiding-skill-atrophy-in-the-age
https://doi.org/10.48550/arXiv.2302.06590
https://doi.org/10.1145/3576915.3623157
https://survey.stackoverflow.co/2024/
https://doi.org/10.1177/030631289019003001
https://aisel.aisnet.org/amcis2003/63/
https://doi.org/10.17705/1jais.00353

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of
information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
https://doi.org/10.2307/30036540

Volkoft, O., & Strong, D. M. (2013). Critical realism and affordances: Theorizing IT-
associated organizational change processes. MIS Quarterly, 37(3), 819-834.
https://doi.org/10.25300/M1SQ/2013/37.3.07

Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future: Writing a
literature review. MIS Quarterly, 26(2), xiii-xxiii.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. Cambridge
University Press.

Ziegler, A., Kalliamvakou, E., Li, X. A., Rice, A., Rifkin, D., Simister, S., Sittampalam, G., &
Aftandilian, E. (2022). Productivity assessment of neural code completion. In Proceedings of
the 6th ACM SIGPLAN International Symposium on Machine Programming (pp. 21-29).
Association for Computing Machinery. https://doi.org/10.1145/3520312.3534864

39

https://doi.org/10.2307/30036540
https://doi.org/10.25300/MISQ/2013/37.3.07
https://doi.org/10.1145/3520312.3534864

Appendix

Appendix A: Participant Consent Form

Research Participant Information Sheet and Consent Form - _
Dissertation Interview

My name is [l 1 am a student at the London School of Economiics.

Thank you for your interest in this project. In this form there is information about the project and a requret for your consent to participate.

If you agree, please complete this form. What is the study about? This study explores how new Al-powered Coding tools effect the tasks, skills and responbilities of

Software developers and track how these tools transform these roles. What will my involvement be? Your involvement will consist of taking part in a one-on-one semi-

structured interview, which will last approximately 30 to 60 minutes. The interview can take place either in person or online, depending on your preference and availability.
Do | have to take part? Participation is voluntary. There are no negative consequences for you if you choose not to take part in this study. It is also fine if you don't

want to answer any specific questions —you can just tell me, and we will move on. What will my information be used for? Your information will be used solely for the

purpose of a Master's dissertation submitted to the London School of Economics. It will not be shared with any third parties. Will my information be anonymous? Your

participation will be anonymous - your name will not be used in any reports or publications resulting from the study.

1. Participants Name *

Enter your answer

2. | have read and undersoed e information providied about this research sbady and hase had the oppomuniny to ask questions. *
| s

| g e

A, lundirssand that miy e ipanon & voluntary and that | can withdras at amy tiems withoi giving & reason, ©

| chagree

A, | aagpieis 00 thad IFvtird baing Sudic reoonced and underitand that tha recoading will ba ranscibed. | undarstared that my responses
will b kepe confidential, my identity will b arorymized. and no identibing information will ba ircheded inany reports o publicanions.

| chuagree

5. hundersmnd that ancevpmied transorigts may ba analyzed wsing Al tools on secune plathorms. Onky on ererpriss LU with no cata
leakaga. *

| chsnagree

£ | agriee that anceymized data from this study may be usad in future academic publcations and presetations. | undarssand Fow i
BCCESE MY rights reganding my penonal data and whoim to conto with conerms *

| s

| chsnagree

7. Lagres 1o dllow my data to be used in his nesaarch study. ©

| s

| chuagrew

40

Appendix B: Detailed Methodology Documentation

B.1 Interview Protocol Evolution
Version 1 (P001-P003): Initial Protocol
1. Background
o Tell me about your role and programming experience.
o When did you first encounter Al coding tools?
2. Current Usage
o Which Al coding tools do you use?
o How often do you use them?
o What tasks do you use them for?
3. Impact
o How have these tools changed your work?
o What are the benefits and challenges?
Version 2 (P004-P009): Enhanced Protocol
Added after PO01's infrastructure emphasis:
4. Organisational Context
o Does your organisation have Al coding Tool policies?
o What infrastructure supports Al coding Tool use?
o How do team dynamics change with Al coding Tools?
5. Skill Development
o Which skills have become more/less important?
o How do you maintain traditional coding abilities?
Version 3 (P010-P014): Final Protocol
Added after emerging themes:

6. Identity and Future

41

o How would you describe yourself professionally now?

o What concerns do you have about junior developers?

o Where do you see the profession heading?

B.2 Complete Code Definitions Table

Code Definition

Explicit decisions about

boundary_setting

when/where to use Al

Creating systems to support

infrastructure_building
Al use

Example Quote Frequency
"Critical path code,
47
that's all me"
"50+ markdown files 31

with prompts"

Framing Al interaction as

educational_metaphors)
teaching

Acknowledged decline in

skill _atrophy

traditional skills

Interview New Codes Total Codes
8 12 78
9 7 85
10 6 91
11 3 94
12-14 0 94

Pre-Study Assumptions Map
Assumption Source

Younger = more adoption Personal bias

"I'm the teacher now" 28

"Can't write algorithms

from scratch"

Confirmed Patterns Decision
6 Continue
8 Continue
11 Saturation likely
12 Saturation confirmed.
12 Validation only

How Challenged

PO11 (28) resisted, PO0O5 (42) transformed

Productivity always good Tech enthusiasm P003's customer automation concern

42

Assumption Source How Challenged
Linear adoption stages ~ TAM literature Three stable clusters emerged
Resistance = failure Success bias Resisters valuable for review

B.3 Data Security and Management Protocols
Security Measures
1. Recording Storage: LSE OneDrive with 2FA, encrypted.
2. Transcription Process: Used Teams Al transcription.
3. Anonymisation Protocol:
o Identity key stored separately (password-protected Excel)
o Company names replaced with descriptors.
o Locations generalised (e.g., "major European city")
4. Retention Schedule: All data deletion 6 months post-assessment
File Naming Convention
e Recordings: REC P0O0X YYYYMMDD.mp4
e Transcripts: TRANS PO0X YYYYMMDD ANON.docx
e Memos: MEMO XX YYYYMMDD.docx
Information Sheet Key Points
e Study purpose: Understanding Al coding Tool impact on professional practice.
e What is involved: 20-45-minute interview.
e Confidentiality: Full anonymisation
o Rights: Can withdraw until analysis begins
o Data use: MSc dissertation only
B.4 Theoretical Sampling Decisions

After Interview 8: Realised sample skewed toward adopters. Actively sought resisters.

43

After Interview 11: Three clusters clear. Sought additional participants to test boundaries

specifically looking for "edge cases" between clusters.

Decision to stop at 14: No new patterns emerging. Each cluster had minimum two

representatives. Pragmatic time constraints approaching.
B.5 Member Checking Process Detail
Stage 1: Transcript Verification
e Sent within 1 week of interview.
e Asked to verify accuracy, not change meanings.
e 12/14 responded with minor corrections (technical terms)
Stage 2: Interpretation Verification
e Selected one participant per cluster (P001, POOS, P013)
e Sent cluster descriptions and key themes.
o Feedback incorporated:
o PO001: Emphasised infrastructure took months to build.
o P008: Clarified organisational constraints influenced boundaries.
o PO013: Confirmed resistance was philosophical, not technical.
B.6 Quality Criteria Application Examples
Credibility
o Triangulation: Multiple industries, experience levels, geographic locations
Transferability
e Thick description: Detailed context for each participant
e Variation sampling: Startups to enterprises, juniors to seniors
e Clear boundaries: Western, English-speaking contexts acknowledged.
Confirmability

o Negative case analysis: Resisters challenged initial framework.

44

o Data availability: Anonymised transcripts available on request.
B.7 Interview Quality Measures
Technical Quality

e Recording quality check before starting

e Quiet environment.
Interview Technique Quality

Avoided leading questions (flagged three instances in reflection)

Used probing effectively ("Tell me more about...")

Allowed silence for reflection.

Balanced speaking time (average 70% participant, 30% researcher)
Post-Interview Reflection Template

1. Key insights from this interview

2. Questions that worked well/poorly

3. My reactions/biases noticed.

4. Follow-up questions for next interviews

5. Technical issues encountered.

Appendix C: Thematic Analysis Coding Framework

Overview

This coding frame presents the key codes that emerged from the thematic analysis of 14
semi-structured interviews with software developers regarding their experiences with Al
coding tools. The analysis process began with 94 initial codes generated through line-by-line
coding of interview transcripts. Through constant comparison and iterative refinement, these
were consolidated to 56 codes, which were then organised into 12 categories. These
categories revealed three distinct transformation patterns that form the main themes of this
research. The coding frame below presents the most significant codes from each theme to

illustrate the analytical process and support the trustworthiness of the findings.

Research Question

45

How do Al coding tools transform the professional practice of software developers?

Theme 1: Complete Transformers (36%, n=5)

Developers who fundamentally reconstructed their professional practice around Al

orchestration

Category: Identity Transformation

Code Description

Fundamental shift in

professional self-concept

IDENTITY_TRANSFORMATION

from coder to Al

educator/orchestrator

Use of educational or
ROLE_METAPHOR_used orchestral metaphors to

describe transformed role

Transition from writing

CODER_TO_ORCHESTRATOR code to managing Al

agents

Category: Infrastructure Development

46

Example Quote

"I'm the teacher now. |
spend my days teaching
the Al what [want, guiding
it through iterations. It's
completely changed how I
work; I don't write code
anymore; | educate Al

systems." (P001)

"I'm managing Al students.
I'll have one Al working on
the API, another on the
frontend, another writing
tests, while I'm
orchestrating and

integrating." (P002)

"I just get things done now.
Don't call me a developer,
I'm a solution creator. The
code is just a byproduct of
solving problems." (P005)

Code Description

Building

comprehensive
KNOWLEDGE_INFRASTRUCTURE_creation documentation

systems to

support Al use

Embedding
collective
ORGANISATIONAL_MEMORY knowledge into

Al-accessible

Example Quote

"50+ markdown files
containing
organisational
memory, best
practices, error
patterns, success
templates... this
infrastructure is what
makes me 5x more
productive than

before." (PO01)

"We built internal Al
coding Tools trained
on years of
documentation... It's
like having a senior

developer who knows

formats .
everything about our
systems." (P004)
Category: Work Practices
Code Description Example Quote
Iterative, . . ‘
_ "I iterate with the Al until
conversational _ .
.) the solution feels right. It's
VIBE_CODING programming with Al

more art than science

now." (P001)

until solution "feels

right"

"It's like running a

MULTI_AGENT ORCHESTRATION Managing multiple Al

instances working on

development team where

the developers never sleep,

47

Code

Description

various aspects

simultaneously

Theme 2: Selective Adopters (50%, n=7)

Example Quote

never complain, but also
never truly understand."

(P002)

Developers maintaining strategic boundaries between human and Al work.

Category: Boundary Management

Code

TASK_DELEGATION_to_Al

TASK_RETENTION_human

Category: Validation Practices

Code

Context-dependent
checking of Al

SELECTIVE_VALIDATION

Description

Deliberate
decisions about
which tasks to

assign to Al

Conscious
preservation of
certain tasks for

human control

Example Quote

"Tests are perfect for Al repetitive,
pattern-based, clear success criteria.
Even if it gets edge cases wrong,
it's faster to fix than write from

scratch." (P006)

"Critical path code, authentication,
payment processing, data handling
that's all me. Al handles the
scaffolding around it." (P006)

Maintaining ability "It's a tool, not a rule. I decide when

HUMAN_OVERRIDE _capability to reject or modify and how to use it based on what's

Al outputs

Description

outputs

48

appropriate." (P006)

Example Quote

"New features get maybe 50%
checking. Anything touching
existing systems gets line-by-line

review." (P00S)

Code Description Example Quote

"Banking regulations mean some
Enhanced scrutiny things must remain under human
DOMAIN_SPECIFIC validation for regulated or control... Every line of code
critical domains touching money has my fingerprints

on it." (P007)

Category: SKkill Preservation
Code Description Example Quote

- "I got to a point where I was
Recognition of ‘ _ ‘
going to write some unit tests

declining
SKILL_ATROPHY _risk and thought 'I shouldn't need to
traditional
o ask AT how to do this.' That
abilities
was my wake-up call." (P008)
"Every Friday is no-Al day. |
Deliberate v Y Y

) code everything manually to
maintenance of
FUNDAMENTAL_SKILL_importance keep skills sharp. A master
core
_ carpenter uses power tools but
competencies
remains a carpenter." (PO11)

Theme 3: Conscious Resisters (14%, n=2)
Developers actively preserving traditional expertise.

Category: Resistance Philosophy

49

Code Description Example Quote

"If you're using Al to do the work,
Deliberate choice you're not learning. You're just
CONSCIOUS _REJECTION to minimise Al getting output. Someone needs to

coding Tool usage preserve real understanding."

(PO13)
Valuing .
. "While others become Al operators,
conventional
TRADITIONAL_PREFERENCE I maintain true developer
development
knowledge." (P013)
methods
Category: Value Creation
Code Description Example Quote

o ~ "I've become the go-to person for
Finding new value in

» _ reviewing Al-generated code.
EXPERTISE_REDEFINITION traditional skills as

Ironically, resisting Al has made
others abandon them
me more valuable." (P014)

Universal Concern (All Participants)

Category: Professional Reproduction

50

Code Description Example Quote

"Where will juniors learn
Concern about entry- '
_ debugging when Al fixes errors
JUNIOR_ROLE impact level developer skill _
instantly? The struggle is where
development '
learning happens." (P002)

"Juniors ask Al before asking
Breakdown of . .
o seniors. We're losing knowledge
MENTORSHIP_DISRUPTION traditional knowledge
transfer mechanisms that built this

profession." (P014)

transfer

Table 2: Category to Theme Mapping

Categories Merged Into Theme

Identity Transformation, Infrastructure Development, Work
Complete Transformers

Practices

Boundary Management, Validation Practices, Skill ‘
i Selective Adopters
Preservation

Resistance Philosophy, Value Creation Conscious Resisters

Universal Concern

Professional Reproduction)
(crosscutting)

Theoretical Integration
The coding process was guided by two theoretical frameworks:
Actor-Network Theory (ANT) Codes Applied:

e ACTOR_ENROLLMENT: How Al coding Tools become active participants in

development networks

e AGENCY _DISTRIBUTION: Task allocation between human and Al actors

51

e NETWORK FORMATION: New configurations of human-AlI relationships.
Affordance Actualisation Theory (AAT) Codes Applied:

e AFFORDANCE PERCEPTION: How developers recognise Al coding Tool

possibilities
e AFFORDANCE ACTUALISATION: Differential realisation of Al capabilities
e CONTEXTUAL CONSTRAINT: Organisational and regulatory limitations

This coding frame demonstrates the systematic progression from raw interview data through

codes and categories to the three transformation patterns that answer the research question.

Appendix D: Additional Participant Quotes and Details
Extended Participant Profiles

Complete Transformers

P001 "The Orchestrator" (Startup Developer, 4 years) Extended quote on infrastructure

development:

"Each markdown file is categorised, we have prompts for different contexts, error patterns
we've encountered, success templates that work. It's like building a second brain for the Al

When a new developer joins, they inherit this knowledge base instantly."
P002 "The Manager" (Healthcare ML Engineer, S years) On domain-specific challenges:

"Healthcare isn't like building a todo app. HIPAA compliance, medical terminology, edge
cases that could literally kill someone, it took three months to train our Al systems to

understand these constraints. But now? It catches compliance issues [might miss."

P003 "The Enthusiast" (Enterprise Developer, 3.5 years) Full reflection on industry

implications:

"What happens when every company needs 80% fewer developers? We're building tools that
make our own jobs redundant. It's exciting and terrifying. I love the productivity, but I worry

about the industry's future."

P004 "The Builder" (Data Analyst, Large E-commerce, 3 years) Detailed infrastructure

description:

52

"We have 10s of thousands of pages of documentation feeding into our LLM. Every API
endpoint, every data schema, every business rule from the past decade. It's like having a

senior developer who's been here since day one and remembers everything."

P005 "The Transcendent" (Freelance Developer, 8 years) On outcome-focused

development:

"Clients don't care if I wrote the code or Al did. They care about results. I deliver in days
what used to take weeks. The code quality? Better than what I'd write manually because Al

doesn't get tired or make typos."
Selective Adopters

P007 "The Boundary Setter" (Backend Developer, Payment Processor, 4.5 years) On

code review challenges:

"Every PR review now I'm wondering, did they write this or did AI? There's a certain 'smell'
to Al code. Perfect but soulless. I've started requiring comments explaining the human

thinking behind implementations."

P008 "The Balanced" (Backend Developer, Major Airline, 3 years) Full transformation

journey:

"First month with Al: amazing, 10x productivity. Second month: wait, I'm forgetting basic
syntax. Third month: full crisis, couldn't debug without AI. Now I've found balance, Al for
exploration, human for implementation of critical parts. Legacy code requires understanding

decades of decisions. Al can't grasp that context."

P009 "The Observer" (Backend Engineer, Fintech, 5 years) On community

fragmentation:

"We're losing our shared foundation. Used to be, any developer could read any other
developer's code. Now? Complete Transformers write through Al abstractions. Resisters

write traditionally. We're becoming different species."
P010 "The Missing Middle showed a blend of opinion and shows that adoption is spectrum.

P012 "The Strategist" (Product Owner, Telecom, 10+ years) On product management

applications:

53

"I use Al for structure creation, user stories, acceptance criteria templates, test scenarios. But
interpreting what stakeholders need versus what they say they want? That's human work. Al

can't read between the lines of a rambling requirements meeting."
Conscious Resisters

P013 "The Purist" (Software Engineer, Industrial Software, 6 years) Extended

philosophy:

"Every line of Al-generated code is technical debt. You don't understand it, you can't maintain
it, you can't optimise it. Sure, it works today. What about in five years when the original Al

model is deprecated and no one remembers why it generated that specific pattern?"
P014 "The Sceptic" (Data Scientist, Large Consulting, 10 years) On forced compliance:

"IBM mandates Watson usage. I write my solution first, then feed it to Watson for
'suggestions' I mostly ignore. It's corporate theatre. The Al is predicting text patterns, not
understanding data science. My resistance has made me the go-to person for catching Al

mistakes others miss."
Detailed Infrastructure Descriptions
Complete Transformer Infrastructure Systems
1. Prompt Engineering Frameworks
o Hierarchical organisation (context — domain — task — variation)
o Version control for prompt evolution
o Success/failure pattern documentation
o Performance metrics tracking
2. Domain-Specific Training Protocols
o Industry regulation compliance matrices
o Technical terminology glossaries
o Edge case documentation
o Error pattern libraries

3. Organisational Knowledge Integration

54

o API documentation ingestion

o Historical codebase analysis

o Business rule encoding

o Team convention capture

Selective Adopter Boundary Systems

1. Decision Matrices

o Task criticality assessment

o Security sensitivity scoring

o Regulatory requirement mapping

o Performance impact evaluation
2. Validation Protocols

o Context-specific review percentages

o Critical path identification

o Legacy system interaction rules

o Compliance checkpoints

Conscious Resister Preservation Systems

1. Knowledge Documentation

o Algorithmic reasoning capture

o Design decision rationale.

o Debugging methodology

o Performance optimisation techniques
2. Review Frameworks

o Al pattern detection methods

o Code quality metrics.

55

o Security vulnerability identification
o Architectural coherence assessment
Task Delegation Details
Complete Statistical Breakdown
Universal Delegation Tasks:
e Test writing: 12/14 (85.7%)
e Documentation: 11/14 (78.6%)
e Boilerplate code: 10/14 (71.4%)
o Data validation: 9/14 (64.3%)
o APl integration: 8/14 (57.1%)
Universal Retention Tasks:
e Architecture design: 14/14 retained (100%)
e Security implementation: 13/14 retained (92.9%)
e Core business logic: 13/14 retained (92.9%)
e Performance optimisation: 12/14 retained (85.7%)
o User experience decisions: 12/14 retained (85.7%)
Extended Quotes on Junior Developer Crisis

P001: "We're creating a generation of developers who can build but not debug, create but not

understand. It's like teaching someone to drive using only self-driving cars."

P004: "Our junior hire can build features faster than I could at 5 years’ experience. But ask

them to explain how it works? Blank stares. They're productive but not knowledgeable."

P007: "Traditional learning meant struggling with problems, finding solutions, understanding

why things work. Now juniors get instant answers. Where's the learning in that?"

P009: "The apprenticeship model is broken. Seniors don't review junior code because Al

already has. Juniors don't ask seniors questions because Al answers faster."

56

P011: "Every bug you struggle with teaches you something. Every algorithm you implement

builds intuition. Al removes the struggle, and with it, the learning."

P013: "We're heading for a cliff. In 5-10 years, when today's juniors should be seniors, they
won't have the deep knowledge needed for system architecture, performance optimisation, or

debugging complex issues."
Interview Context and Reflexive Notes
Recruitment Challenges
o Initial difficulty finding Conscious Resisters
e Geographic bias toward English-speaking countries
o Company size skewed toward large enterprises.
Interview Dynamics
e Complete Transformers: Enthusiastic, often exceeded time.
e Selective Adopters: Measured, precise responses.
o Conscious Resisters: Initially defensive, then philosophical
Researcher Observations
e Surprise at depth of identity transformation
o Unexpected universality of junior developer concerns
o Infrastructure investment levels exceeded expectations.

e Cluster boundaries more permeable than anticipated.

57

Appendix E: Semi-Structured Interview Questions
Semi-Structured Interview Guide: Al Coding Tools and

Programmer Role Transformation - Naoise Law

Interview Duration: Estimated 30 minutes per interview

Opening (3 minutes)

Introduction and Ci t

e Thank you for participating in this h.

« Thisinterview is part of my dissertation research at LSE examining the impact of Al tools like GitHub Copilot, Claude,
and ChatGPT on software development

e Your responses will be kept confidential and anonymous. Once analysed, all data will be deleted per GDPR and
ethical guidelines.

e May | record this interview for transcription purposes?
Section 1: Background and Context (5 minutes)

1.1 Role and Experience
Can you tell me about your current role and how long you've been working in software development?
* Probe: What programming languages do you primarily work with?
* Probe: What type of projects or systems do you typically work on?
1.2 Al Tool Exposure
Which Al coding tools have you used or encountered in your work?
* Probe: When did you first start using these tools?
* Probe: How frequently do you use them (daily, weekly, occasionally)?

Section 2: Current Al Tool Usage and Integration (5 minutes)

2.1 Implementation and Adoption
How were Al coding tools introduced in your organization or personal workflow?
* Probe: Was this a top-down decision or bottom-up adoption?
* Probe: What was your initial reaction?
2.2 Specific Use Cases
Can you walk me through how you typically use Al coding tools in your daily work
* Probe: What specific tasks do you use them for most often?
* Probe: Are there tasks where you deliberately avoid using Al tools?
2.3 Integration Challenges
What challenges did you face when first integrating these tools into your workflow?

* Probe: How did you overcome these challenges?

58

Section 3: Role and Task Transformation (7 minutes)
3.1 Daily Work Changes
How has your day-to-day work changed since you started using Al coding tools?
3.2 Skill Evolution
What new skills have you developed to work effactively with Al tools?
» Probe: How do you evaluate Al-generated coda?
» Probe: Have any of your traditional coding skills become less important?
3.3 Role Perception
How would you describe your role now compared to before using Al tools?
* Probe: Do you see yourself more as a code writer, code reviewer, ar something else?
3.4 Decision Making and Agency
How do you decide when to accept, modify, or reject Al-generated code suggestions?

Section 4: Impact Assessment (8 minutes)

4.1 Productivity and Efficiency
How have Al tools affected your productivity and work quality?
» Probe: Can you give specific examplas of time saved or efficiency gains?
* Probe: Have you noticed any changes in the quality of your work?
4.2 Benefits and Challenges
What do you see as the main benefits of using Al coding tools?
s Follow-up: What are the main challenges or drawbacks?
4.3 Team Dynamics
How have Al tools affected collabeoration and teamwork in your organization?
* Probe: Has it changed code review processes?
Section 5: Future Perspectives and Concerns (2 minutes)
5.1 Future Expectations
How do you expect Al coding tools to evolve in the next 2-3 years?
s Probe: What changes do you anticipate in your role or the industry?
5.2 Hopes and Fears
What are your main hopes or fears for the future of Al in software development?
s Probe: Do you have any concerns about job security or skill obsolescence?
Closing (2 minutes)

Is there anything in your experience using these Al coding tools we haven't covered that you think would be impaortant?
Thank you so much for your time and please fill out the consent form that will be emailed to you. This has to be completed to
use the content of the interview.

Thanks again and let me know if you are interested in the results.

Appendix F: Al Acknowledgement

I state that the use of Generative Al during this study was well within the line set with the
MG4D7 MISDI Dissertation “Limited Authorised Use” policy. Claude was primarily used to
assist me in maintaining deadlines and coherency between chapters and helped me with
storing and then reflecting on my ideas for the research, I did also use tools were in the early
stages of the research process for brainstorming, helping me structuring ideas, and helping
me understand academic theories, Zero Generative Al was used for the data analysis and I did
not upload data to these platforms. All feedback and suggestions provided by the tools were
critically reviewed by myself.

59

